FINDING AREA OF QUADRILATERAL PARALLELOGRAM AND RHOMBUS WORD PROBLEMS

Problem 1 :

Find the area of the unshaded region.

Solution :

<BDA  =  90

AB =  DA2 + DB2

AB =  122 + 162

AB =  144 + 256

AB =  400

AB  =  20

Area of unshaded region  =  Area of ACB - Area of ADB

Area of ACB :

AC  =  34 cm, BC  =  42 cm and AB  =  20

s  =  (a + b + c)/2

s  =  (34 + 42 + 20)/2

s  =  48

s - a  =  48 - 34  =  14, s - b  =  48 - 42  =  6

and s - c  =  48 - 20  =  28

  =  √s(s - a) (s - b) (s - c)

  =  √48 ⋅ 14 ⋅ 6 ⋅ 28

  =  336 cm2

 Area of ADB :

DB  =  16 cm, DA  =  12 cm and AB  =  20

s  =  (16 + 12 + 20)/2

  s  =  48/2  =  24

s - a  =  24 - 16  =  8, s - b  =  24 - 12  =  12

and s - c  =  24 - 20  =  4

  =  √24 ⋅ 8 ⋅ 12 ⋅ 4

  =  96 cm2

Area of unshaded region  =  336 - 96

  =  240 cm2

Problem 2 :

Find the area of a quadrilateral ABCD whose sides are AB = 13cm, BC = 12cm, CD = 9cm, AD = 14cm and diagonal BD = 15cm.

Solution :

Area of quadrilateral ABCD  =  Area of ADB+Area of DBC

Area of ADB :

a = 13, b = 15, c = 14

s  =  (13 + 15 + 14)/2  =  21

  =  √21(21 - 13) (21 - 15) (21 - 14)

  =  √21 ⋅ 8 ⋅ 6 ⋅ 7

  =  84 cm2

Area of BDC :

a = 12, b = 9, c = 15

s  =  (12 + 9 + 15)/2  =  18

  =  √18(18 - 12) (18 - 9) (18 - 15)

  =  √18 ⋅ 6 ⋅ 9 ⋅ 3

  =  54 cm2

Area of quadrilateral  =  84 + 54

  = 138 cm2

Problem 3 :

A park is in the shape of a quadrilateral. The sides of the park are 15 m, 20 m, 26 m and 17 m and the angle between the first two sides is a right angle. Find the area of the park.

Solution :

In triangle ABC,

AC2  =  AB2 + BC2

AC2  =  152 + 202

AC2  =  225 + 400

AC  =  √625  =  25

Area of quadrilateral ABCD  =  Area of ABC+Area of ADC

Area of ABC :

a = 15, b = 20, c = 25

s  =  (15 + 20 + 25)/2  =  30

  =  √30(30 - 15) (30 - 20) (30 - 25)

  =  √30 ⋅ 15 ⋅ 10 ⋅ 5

  =  150 cm2

Area of ADC :

a = 17, b = 26, c = 25

s  =  (17 + 26 + 25)/2  =  34

  =  √34(34 - 17) (34 - 26) (34 - 25)

  =  √34 ⋅ 17 ⋅ 8 ⋅ 9

  =  204 cm2

Area of quadrilateral  =  150 + 204

=  354 cm2

Problem 4 :

The front of an A-frame house is in the shape of a triangle. The height of the house is 20 feet. The area of the front of the A-frame is 600 square feet. Write and solve an equation to find the base of the A-frame house.

Solution :

Area of the frame in the shape of triangle

= 600 square feet

(1/2) x base x height = 600

height = 20 ft

(1/2) x base x 20 = 600

base x 10 = 600

base = 600/10

base = 10 ft

So, the required base of the triangle is 10 ft.

Problem 5 :

One side of a parallelogram is 18 cm and its distance from the opposite side is 8 cm. The area of the parallelogram

Solution :

Base = 18 cm

Height = 8 cm

Area of parallelogram = base x height

= 18 x 8

= 144 cm2

Problem 6 :

A parallelogram has sides 30 m and 14 m and one of its diagonals is 40 m long. then the area is :

Solution :

In parallelogram, opposite sides will be equal. The triangle created by the sides of the parallelogram and diagonal.

area-of-quad-parallelogram-q1

a = 30, b = 14, c = 40

s  =  (30 + 14 + 40)/2  =  42

Area of isosceles triangle

= √42(42 - 30) (42 - 14) (42 - 40)

  =  √42 ⋅ 12 ⋅ 28 ⋅ 2

= 168

Area of parallelogram = 168 (2)

= 336 m2

Problem 7 :

A triangle and parallelogram are constructed on the same base such that their areas are equal. If the altitude of the parallelogram is 100 m, then the altitude of the triangle is 

a)  10√2 m     b)  100 m     c)  100√2 m      d)  200 m

Solution :

When triangle and parallelogram are at the same base their areas will be equal.

base x height = (1/2) x base x height

Altitude of parallelogram = 100 m

base x 100 = (1/2) x base x height

Since the two shapes are having same base,

100 = (1/2) x h

h = 100(2)

= 200 m

So, the required height of the triangle is 200 m. Option d is correct.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 150)

    Apr 25, 25 11:46 AM

    Digital SAT Math Problems and Solutions (Part - 150)

    Read More

  2. AP Calculus AB Problems with Solutions (Part - 19)

    Apr 24, 25 11:10 PM

    AP Calculus AB Problems with Solutions (Part - 19)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 18)

    Apr 24, 25 11:06 PM

    apcalculusab17.png
    AP Calculus AB Problems with Solutions (Part - 18)

    Read More