FINDING CONTINUITY OF PIECEWISE FUNCTIONS

Question 1 :

A function f is defined as follows :

Is the function continuous?

Solution :

(i) First let us check whether the piece wise function is continuous at x = 0.

For the values of x lesser than 0, we have to select the function f(x)  =  0.

lim x->0- f(x)  =  lim x->0- 0

  =  0 -------(1)

For the values of x greater than 0, we have to select the function f(x)  =  x.

lim x->0+ f(x)  =  lim x->0+ x

  =  0  -------(2)

lim x->0- f(x) = lim x->0+ f(x)

Hence the function is continuous at x = 0.

(ii) Let us check whether the piece wise function is continuous at x = 1.

For the values of x lesser than 1, we have to select the function f(x)  =  x.

lim x->1- f(x)  =  lim x->1- 0

  =  1 -------(1)

For the values of x greater than 1, we have to select the function f(x)  =  -x2 + 4x - 2.

lim x->1+ f(x)  =  lim x->1+ (-x2 + 4x - 2)

  =  -12 + 4(1) - 2

=  -1 + 4 - 2

=  1  -------(2)

lim x->1- f(x) = lim x->1+ f(x)

Hence the function is continuous at x = 1.

(iii) Let us check whether the piece wise function is continuous at x = 3.

For the values of x lesser than 3, we have to select the function f(x)  =  -x2 + 4x - 2.

lim x->3- f(x)  =  lim x->3- -x2 + 4x - 2

  =  -32 + 4(3) - 2

=  -9 + 12 - 2

=  -11 + 12

  =  1  -------(1)

For the values of x greater than 3, we have to select the function f(x)  =  4 - x

lim x->3+ f(x)  =  lim x->3+ 4 - x

=  4 - 3

=  1  -------(2)

lim x->3- f(x) = lim x->3+ f(x)

Hence the function is continuous at x = 3.

Question 2 :

Find the points of discontinuity of the function f, where

Solution :

For the values of x greater than 2, we have to select the function x + 2.

lim x->2- f(x)  =  lim x->2- x + 2

  =  2 + 2

       =  4  -------(1)

For the values of x lesser than 2, we have to select the function x2.

lim x->2+ f(x)  =  lim x->2+ x2

  =  22

       =  4-------(2)

lim x->2- f(x) =  lim x->2+ f(x)

The function is continuous at x = 2.

Hence the given piecewise function is continuous for all ∈ R.

Question 3 :

Find the points of discontinuity of the function f, where

Solution :

For the values of x greater than 2, we have to select the function x2 + 1

lim x->2- f(x)  =  lim x->2- x2 + 1

  =   22 + 1

       =  5  -------(1)

For the values of x lesser than 2, we have to select the function x3 - 3.

lim x->2+ f(x)  =  lim x->2+ x- 3

  =  2- 3

=  8 - 3

       =  5-------(2)

lim x->2- f(x) =  lim x->2+ f(x)

The function is continuous at x = 2.

Hence the given piecewise function is continuous for all ∈ R.

Question 4 :

Find the points of discontinuity of the function f, where

Solution :

Here we are going to check the continuity between 0 and π/2.

For the values of x lesser than or equal to π/4, we have to choose the function sin x.

lim x->π/4- f(x)  =  lim x->π/4- sin x

       =  sin (π/4)

=  1/√2

For the values of x greater than π/4, we have to choose the function cos x .

lim x->π/4+ f(x)  =  lim x->π/4+ cos x

       =  cos (π/4)

=  1/√2

The function is continuous for all x ∈ [0, π/2).

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 21, 24 02:20 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 89)

    Dec 20, 24 06:23 AM

    digitalsatmath78.png
    Digital SAT Math Problems and Solutions (Part - 89)

    Read More