FINDING LINEAR APPROXIMATION FOR A FUNCTION

Let f : (a,b)→R be a differentiable function and

x∈ (a, b)

We define the linear approximation L of f at x0 by

Find a linear approximation for the following functions at the indicated points.

Problem 1 :

f(x)  =  x3-5x+12 and x0  =  2

Solution :

f(x)  =  x3-5x+12

Let x0  =  2

L(x)  =  f(x0) + f'(x0) (x - x0)

f(x)  =  x3-5x+12

f(x0)  =  23-5(2)+12

f(2)  =  8-10+12

f(2)  =  10

f(x)  =  x3-5x+12

f'(x)  =  3x2-5

f'(x0)  =  3x2-5

f'(2)  =  3(2)2-5

f'(2)  =  12-5

f'(2)  =  7

L(x)  =  f(2) + f'(2) (x - 2)  ----(1)

Applying the above values in (1), we get

L(2)  =  10 + 7(x - 2)

L(2)  =  10 + 7x - 14

L(2)  =  7x - 4

Problem 2 :

g(x)  =  √(x2+9) and x0  =  -4

Solution :

g(x)  =  √(x2+9) and x0  =  -4

Here f(x) and g(x) are equal.

L(x)  =  f(x0) + f'(x0) (x-x0) ----(1)

g(x0)  =   √((-4)2+9)  =  √(42+9)  =  5

g'(x)  =  [1/2√(x2+9)] (2x)

g'(x)  =  x/√(x2+9)

g'(x0)  =  g'(-4)  =  -4/√(42+9)

 g'(-4)  =  -4/5

By applying the values of g(x0) and g'(x0) in (1), we get

L(-4)  =  5 + (-4/5)(x+4)

L(-4)  =  5 - (4x/5) - (16/5)

L(-4)  =  (9/5) - (4x/5)

L(-4)  =  (1/5) (9-4x)

Problem 3 :

h(x)  =  x/(x+1) and x0  =  1

Solution :

Here f(x) and h(x) are equal.

L(x)  =  f(x0) + f'(x0) (x-x0)

h(x)  =  x/(x+1) and x0  =  1

h(x0)  =  1/(1+1)  =  1/2

h'(x)  =  [(x+1)(1)-x(1)] / (x+1)2

h'(x)  =  (x+1-x) / (x+1)2

h'(x)  =  1/(x+1)2

h'(x0)  =  1/(1+1)2

h'(x0)  =  1/4

By applying the values of h(x0) and h'(x0) in (1)

L(1)  =  (1/2) + (1/4)(x-1)

L(1)  =  (1/2) + (x/4)-(1/4)

L(1)  =  (1/4)(1+x)

Problem 4 :

Since there were no problems on linear approximation on the second practice prelim, we are including some separately.

Consider the function f(x) = e2x.

(a) Determine the linearization L(x) of f(x) at the point (0, 1).

(b) Use your result in (a) to approximate e0.2.

Solution :

f(x) = e2x

f'(x) = e2x (2)

f'(x) = 2e2x

f'(0) = 2e2(0)

= 2(1)

= 2

L(x)  =  f(x0) + f'(x0) (x-x0)

When x = 0, f(0) = 1

L(0) = 1 + 2(x - 1)

= 1 + 2x - 1

= 2x

approximating e0.2:

L(0.2)  =  2(0.2)

= 0.4

Problem 5 :

Find the linear approximation of f(x) = x sin (πx2) about x = 2. Use the approximation to estimate f(1.99)

Solution :

f(x) = x sin (πx2)

f'(x) = x(cos (πx2)(2x) + sin (πx2) (1)

f'(x)  = 2x2cos (πx2sin (πx2)

At x = 2

f'(2) = 2(2)2cos (π(2)2sin (π(2)2)

= 8 cos (4π) sin (4π)

= 8(1) + 0

= 8

f(x) = x sin (πx2)

f(2) = 2 sin (π(2)2)

= 2 (sin 4π)

= 2(0)

f(2) = 0

L(x)  =  f(x0) + f'(x0) (x-x0)

L(2)  =  f(2) + f'(2) (x - 2)

L(2)  = 0 + 8 (x - 2)

L(2)  = 8 x - 16

Approximating f(1.99) :

L(1.99)  = 8 (1.99) - 16

= 15.92 - 16

= 0.08

Problem 6 :

Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line at x = 3 is used to find an approximation to a zero of f , that approximation is

(A) 0.4   (B) 0.5    (C) 2.6    (D) 3.  4 (E) 5.5

Solution :

L(x)  =  f(x0) + f'(x0) (x-x0)

L(3)  =  f(3) + f'(3) (x - 3)

L(3) = 2 + 5 (x - 3)

L(3) = 2 + 5 x - 15

L(3) =  5 x - 13

L(3) = 0

5x - 13 = 0

5x = 13

x = 13/5

x = 2.6

So, option c is correct

Problem 7 :

The approximate value of y = √(4 + sin x) at x = 0.12 obtained from t he tangent to the graph at x  = 0

(A) 2   (B) 2.03    (C) 2.06    (D) 2.12  (E) 2.24

Solution :

y = √(4 + sin x)

When x = 0

y = √(4 + sin 0)

y = √4

y = 2

f'(x) = 1 /2√(4 + sin x)(cos x)

=  (cos x)/2√(4 + sin x)

When x = 0

=  (cos 0)/2√(4 + sin 0)

= 1/2(2)

f'(0) = 1/4

L(x)  =  f(x0) + f'(x0) (x - x0)

L(x)  =  2 + (1/4)(0.12 - 0)

  =  2 + (1/4)(0.12 - 0)

2 + 0.03

= 2.03

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 152)

    Apr 28, 25 11:54 AM

    Digital SAT Math Problems and Solutions (Part - 152)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 151)

    Apr 26, 25 11:18 AM

    digitalsatmath183.png
    Digital SAT Math Problems and Solutions (Part - 151)

    Read More

  3. AP Calculus BC Problems with Solutions

    Apr 26, 25 05:49 AM

    AP Calculus BC Problems with Solutions

    Read More