FINDING MISSING ANGLE USING THE CONCEPT OF TRANSVERSAL

Example 1 :

In the figure shown below, if the lines AB an CD are parallel, then find the value of x. 

Solution :

Let us draw a line passing through T and parallel to AB and CD.

The lines AB and TS are parallel and TA is a transversal.

ATS + TAB  =  180°

ATS + 140°  =  180

ATS  =  180° - 140°  =  40° -----(1)

In a same way 

TCD + CTS  =  180°

150° + CTS  =  180°

CTS  =  180° - 150°  =  30°  -----(2)

(1) + (2)  ==>  40° + 30°  =  70°

So, the value of x is 70.

Example 2 :

In the figure shown below, if the lines AB an CD are parallel, then find the value of x. 

Solution :

Now we have drawn a line passing through x and it is parallel to AB and CD.

PRB + ABR  =  180°

PRB + 48  =  180°

PRB  =  180° - 48°

PRB  =  132° -----(1)

In the same way,

PRD + CDR  =  180°

PRD + 24°  =  180°

PRD  =  180° - 24°  =  156° -----(2)

(1) + (2) ==>  132° + 156°  =  288°

So, the required angle is 288°.

Example 3 :

In the figure shown below, if the lines AB an CD are parallel, then find the value of x. 

BAD  =  ADC (Alternative angles)

ADC  =  53°

In triangle ECD,

ECD + CDE + DEC  =  180°

38° + 53° + DEC  =  180°

DEC  =  180° - 91°

DEC  =  89°

So, the value of x is 89.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (part - 92)

    Dec 27, 24 10:53 PM

    digitalsatmath80.png
    Digital SAT Math Problems and Solutions (part - 92)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 27, 24 10:48 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. AP Calculus AB Problems with Solutions

    Dec 26, 24 07:41 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions

    Read More