FINDING THE VERTEX FOCUS AND DRECTRIX OF A PARABOLA FROM ITS EQUATION

Parabola symmetric about x-axis and open right ward :

Standard form of parabola

y2  =  4ax

Parabola symmetric about x-axis and open left ward :

Standard form of parabola

y2  =  -4ax

Parabola symmetric about y-axis and open up ward :

Standard form of parabola

x2  =  4ay

Parabola symmetric about y-axis and open down ward :

Standard form of parabola

x2  =  -4ay

Now let us see some examples based on the above concept.

Example 1 :

Find the focus, vertex, equation of directrix and length of the latus rectum of the parabola

x2  =  5y

Solution :

From the given equation, the parabola is symmetric about y - axis and it is open upward.

x2  =  5y

4a  =  5

a  =  5/4

Vertex : V (0, 0)

Focus : F (0, 5/4)

Equation of directrix : y  =  -5/4

Length of latus rectum :  4a  =  4(5/4)  ==> 5

Example 2 :

Find the focus, vertex, equation of directrix and length of the latus rectum of the parabola

x2 - 8y - 2x + 17  =  0

Solution :

x2 - 8y - 2x + 17  =  0

x2 - 2x  =  8y - 17

x2 - 2x + 12 - 12  =  8y - 17

(x - 1)2  =  8y - 17 + 1

(x - 1)2  =  8y - 16

(x - 1)2  =  8(y - 2)

From the given equation, the parabola is symmetric about y - axis and it is open upward.

Let X  =  x - 1 and Y  =  y - 2

X2  =  8Y

4a  =  8

a  =  2

Referred to X and Y

X  =  x -  1 and Y  =  y - 2

Referred to x and y

x  =  X + 1 and y  =  Y + 2

Vertex (0, 0)

Focus (0, 2)

Equation of directrix

Y  =  -a

Y  =  -2

Length of latus rectum :

4a  =  4(2)  =  8

Vertex (1, 2)

Focus (1, 4)

Equation of directrix 

Y  =  0

Length of latus rectum :

4a  =  4(2)  =  8

Example 3 :

Find the focus, vertex, equation of directrix and length of the latus rectum of the parabola

 x2  =  -16y 

Solution :

From the given equation, the parabola is symmetric about y - axis and it is open downward.

x2  =  -16y

4a  =  16

a  =  4

Vertex : V (0, 0)

Focus : F (0, -4)

Equation of directrix : y  =  a  ==>  y  =  4

Length of latus rectum :  4a  =  4(4)  ==> 16

Example 4 :

Find the focus, vertex, equation of directrix and length of the latus rectum of the parabola

x2 + 4y - 6x + 17  =  0

Solution :

x2 + 4y - 6x + 17  =  0

x2 - 6x  =  -4y - 17

x2 - 6x + 32 - 32  =  -4y - 17

(x - 3)2  =  -4y - 17 + 9

(x - 3)2  =  -4y - 8

(x - 3)2  =  -4(y + 2) 

From the given equation, the parabola is symmetric about y - axis and it is open downward.

Let X  =  x - 3 and Y  =  y + 2

X2  =  -4Y

4a  =  4

a  =  1

Referred to X and Y

X = x -  3 and Y = y + 2

Referred to x and y

x  =  X + 3 and y  =  Y - 2

Vertex (0, 0)

Focus (0, -1)

Equation of directrix

Y  =  a

Y  =  1

Length of latus rectum :

4a  =  4(1)  =  4

Vertex (3, -2)

Focus (3, -3)

Equation of directrix 

Y  =  -1

Length of latus rectum :

=  4

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 20, 24 06:25 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 89)

    Dec 20, 24 06:23 AM

    digitalsatmath78.png
    Digital SAT Math Problems and Solutions (Part - 89)

    Read More

  3. Solving Trigonometric Equations Problems and Solutions

    Dec 18, 24 10:53 AM

    Solving Trigonometric Equations Problems and Solutions

    Read More