GENERAL AND MIDDLE TERMS OF BINOMIAL EXPANSION

Here we are going to see how to find the middle term in binomial expansion.

General term :

T(r+1)ncr x(n-r) ar

The number of terms in the expansion of (x + a)depends upon the index n. The index is either even (or) odd.

Let us find the middle terms.

Case (i) : n is even 

The number of terms in the expansion is (n + 1), which is odd. Hence, there is only one middle term and it is given by T(n/2) + 1

Case (ii) : n is odd

The number of terms in the expansion is (n + 1), which is even. Hence, there are two middle terms and they are given by T(n + 1)/2 and T(n + 3)/2

Example 1 :

Find the constant term in the expansion (√x - 2/x2)10

Solution :

T(r+1) =  ncr x(n-r) ar

Comparing the given expression with the form (x + a)nwe get x = √x, a = -2/x2 and n = 10

T(r+1) =  10cr x(10-r) (-2/x2)r

=  10cr x1/2(10-r) (-2x-2)r

=  10cr x(10-r)/2 (-2x-2)r

= (-2)r 10cr x(10-r)/2 x-2r

(-2)r 10cr x(10-r-4r)/2

(-2)r  10cr x(10-5r)/2

Let Tr + 1 be the constant term 

(10 - 5r)/2  =  0 ⇒ r = 2

Tr + 1 = T2 + 1

(-2)2  10c2 x(10-5(2))/2

10C =  (10⋅9)/(2⋅1)

= 4(45x0)

Hence the constant term is 180

Let us see the next example on "General and middle terms in binomial theorem".

Example 2 :

Find the constant term in the expansion (2x2 + 1/x)12

Solution :

T(r+1) =  ncr x(n-r) ar

Comparing the given expression with the form (x + a)nwe get x = 2x2, a = 1/x and n = 12

T(r+1) =  12cr (2x2)(12-r) (1/x)r

 =  12cr (212-r)(x2)(12-r) (x-r)

 =  212-r [12cr x(24-3r)]

Let Tr + 1 be the constant term 

24 - 3r  =  0 ⇒ r = 8

Tr + 1 = T8 + 1

 212-8 [12c8 x24-3(8)]

 2(495) x ==> 7920

So, the constant term is 7920.

Example 3 :

Find the middle term in the expansion of (3x - 2x2/3)8

Solution :

Here n = 8, that is even

So, the middle term  = T(n/2) + 1

  =  T (8/2) + 1

  =  T (4 + 1)  ==>  T 5

General term : 

T(r+1) =  ncr x(n-r) ar

x = 3x, a = 2x2/3,  r = 4 and n = 8

T (4 + 1)  =  8c4 (3x)(8-4) (2x2/3)4

  =  (8  7  6  5)/ (4  3  2  1)(3x)4 (2x2/3)4

  =  (8  7  6 ⋅ 5)/ (4  3  2  1)(3x)4 (2x2/3)4

  =  70(81x4)(16x8/81)

  =  70(16)x12

  =  1120x12

Example 4 :

Find the middle term in the expansion of (b/x  - x/b)16.

Solution :

Here n = 16, that is even

So, the middle term  = T(n/2) + 1

  =  T (16/2) + 1

  =  T (8 + 1)  ==>  T 9

General term : 

T(r+1) =  ncr x(n-r) ar

x = b/x, a = x/b,  r = 8 and n = 16

(8 + 1)  =  16c8 (b/x)(16-8) (x/b)8

  =  16c8 (b/x)8 (x/b)8

  = 16c8

Example 5 :

Find the middle term in the expansion of (a/x  - x)16

Solution :

Here n = 16, that is even

So, the middle term  = T(n/2) + 1

  =  T (16/2) + 1

  =  T (8 + 1)  ==>  T 9

General term : 

T(r+1) =  ncr x(n-r) ar

x = a/x, a = x,  r = 8 and n = 16

(8 + 1)  =  16c8 (a/x)(16-8) (x)8

  =  16c8 a8 x-8 

  =  16c8 a8 x-4

  =  16c8 a8/x4

Example 6 :

Find the middle term in the expansion of (x  - 2y)13

Solution :

Here n = 13, that is even

So, the middle term  =  T(n + 1)/2 and T(n + 3)/2

T(n + 1)/2   =   T (13+1)/2  ==>  T 7

General term : 

T(r+1) =  ncr x(n-r) ar

x = x, a = -2y,  r = 6 and n = 13

(6 + 1)  =  13c6 (x)(13-6) (-2y)6

  =  13c6 x7 (-2)y6

  =  13c6 x7 2y6

T(n + 3)/2   =   T (13+3)/2  ==>  8

x = x, a = -2y,  r = 7 and n = 13

(7 + 1)  =  13c6 (x)(13-7) (-2y)7

  =  13c6 x6 (-2)y7

  = - 13c6 x6 2y7

Example 7 :

Find the middle term in the expansion of (x  + 2/x2)17

Solution :

Here n = 17, that is even

So, the middle term  =  T(n + 1)/2 and T(n + 3)/2

T(n + 1)/2   =   T (17+1)/2  ==>  9

General term : 

T(r+1) =  ncr x(n-r) ar

x = x, a = 2/x2,  r = 8 and n = 17

(8 + 1)  =  17c8 (x)(17-8) (2/x2)8

  =  17c8 x9 (2)x-16

  =  17c8 x9-16 28

  =  17c8 x-7 28

  =  17c8 (28/x7) 

T(n + 3)/2   =   T (17+3)/2  ==>  10

x = x, a = 2/x2,  r = 9 and n = 17

(9 + 1)  =  17c9 (x)(17-9) (2/x2)9

  =  17c9 (x)(29/x18)  

=  17c9 (x)(29x-18)

=  17c9 (x)8-18 29

=  17c9 x-10 29

=  17c9 (29/x10)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Solving Trigonometric Equations Problems and Solutions

    Dec 18, 24 10:53 AM

    Solving Trigonometric Equations Problems and Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 17, 24 10:13 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 88)

    Dec 17, 24 10:07 AM

    digitalsatmath75.png
    Digital SAT Math Problems and Solutions (Part - 88)

    Read More