GEOMETRIC SERIES IN SIGMA NOTATION

Instead of writing out the terms of a geometric sequence in a sum, you will often see this expressed in a shorthand form using sigma notation.

Key Point :

r = 1r = n ar  =  a1a2 + a3 + ......... + an

The value of r at the bottom of the sigma (here r = 1) shows where the counting starts.

The value of r at the top of the sigma (here r = n) shows where the counting stops.

Example 1 : 

Evaluate :

r = 1r = 10 (2 ⋅ 4r)

Solution :

Substitute the first few values into the formula. 

r = 1r = 6 (⋅ 4r) = (⋅ 41) + (⋅ 42) + (⋅ 43) + ......

= (⋅ 4) + (⋅ 16) + (⋅ 64) + ......

= 8 + 32 + 128 + ......

The above is a geometric series with a1 = 9 and d = 4.

Use Sn = a1(1 - rn)/(1 - r) to find the sum. 

= 8(1 - 46)/(1 - 4)

= 8(1 - 4096)/(-3)

= 8(-4095)/(-3)

= 8(1365)

= 10920

Example 2 : 

Evaluate :

r = 3r = 10 (3r - 1)

Solution :

Substitute the first few values into the formula. 

r = 3r = 10 (3r - 1) = 33 - 1 + 34 - 1 + 35 - 1 + ......

32 + 33 + 34 + ......

= 9 + 27 + 81 + ......

The above is an arithmetic series with a1 = 9 and d = 3.

Use Sn = a1(1 - rn)/(1 - r) to find the sum (from r = 3 to r = 10, there are 8 terms, so n = 8).

= 9(1 - 38)/(1 - 3)

= 9(1 - 6561)/(-2)

= 9(-6560)/(-2)

= 9(3280)

= 29520

Example 3 : 

Write the following arithmetic series in sigma notation. 

4 + 8 + 16 + ........... + 1024

Solution :

In the given geometric series,

a1 = 4

r = a2/a1 = 8/4 = 2

Find the formula for nth term. 

an a1rn - 1

Substitute a1 = 4 and r = 2.

= 4(2)n - 1

= 22(2)n - 1

= 22 + n - 1

= 2n + 1

Let an = 1024.

an = 1024

2n + 1 = 1024

Write 1024 as a power of 2. 

2n + 1 = 210

n + 1 = 10

n  =  9

n  =  9

In the given geometric series, 4 is the 1st term and 1024 is the 9th term. 

Then, 

4 + 8 + 16 + ........... + 1024  =  n = 1n = 9 (2n + 1)

Example 4 : 

Write the following arithmetic series in sigma notation. 

9 + 3 + 1 + 1/3 ........... + 1/243

Solution :

In the given arithmetic series,

a1 = 9

r = a2/a1 = 3/9 = 1/3

Find the formula for nth term. 

aa1rn - 1

Substitute a1 = 9 and r = 1/3.

= 9(1/3)n - 1

= 32(3-1)n - 1

= 32(3-n + 1)

= 32 - n + 1

= 33 - n

Let an = 1/243.

an = 1/243

33 - n = 1/243

Write 1/243 as a power of 3. 

33 - n = 1/(35)

33 - n = 3-5

3 - n = -5

-n = -8

n = 8

In the given geometric series, 9 is the 1st term and 1/243 is the 8th term. 

Then, 

9 + 3 + 1 + 1/3 ........... + 1/243 = n = 1n = 8 (33 - n)

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 24, 25 12:35 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 102)

    Jan 24, 25 12:30 PM

    digitalsatmath102.png
    Digital SAT Math Problems and Solutions (Part - 102)

    Read More

  3. Solving Equations with the Given Roots

    Jan 23, 25 04:57 AM

    Solving Equations with the Given Roots

    Read More