GRADE 11 TRIGONOMETRY PROBLEMS

Sum to Product Identities

sin C + sin D  =  2 sin [(C + D)/2] cos [(C - D)/2]

sin C - sin D  =  2 cos [(C + D)/2] sin [(C - D)/2]

cos C + cos D  =  2 cos [(C + D)/2] cos [(C - D)/2]

cos C - cos D  =  -2 sin [(C + D)/2] sin [(C - D)/2]

Problem 1 :

Prove that

sin(4A-2B) + sin(4B-2A) /cos(4A-2B) + cos(4B-2A) = tan(A+B)

Solution :

sin(4A-2B) + sin(4B-2A) 

=   2sin(A + B)cos(3A+3B)

cos(4A-2B) + cos(4B-2A) 

=  2cos(A+B)cos(3A+3B)

Then, 

sin(4A-2B) + sin(4B-2A) /cos(4A-2B) + cos(4B-2A) :

=  2sin(A+B)cos(3A+3B) /2cos(A+B)cos(3A+3B)

=  tan(A+B)

Hence proved.

Problem 2 :

Prove that :

cot(A+15) - tan(A-15)  =  4cos2A/(1 + 2sin2A)

Solution :

cot(A+15)  =  cos(A+15) / sin(A+15)

tan(A+15)  =  sin(A-15) / cos(A-15)

Then, 

cot(A+15) - tan(A-15) :

= [cos(A+15)/sin(A-15)] - [sin(A-15)/cos(A-15)]

=  [cos (A+15)cos(A-15) - sin(A-15)sin(A+15)] / sin(A+15)cos (A-15)  -------(1)

cos(A+15)cos(A-15)  =  (1/2)[2cos(A+15) cos (A-15)]

=  (1/2)[cos2A + cos30]

sin(A-15)sin(A+15)  =  (-1/2)[-2 sin (A-15) sin (A+15)]

=  (-1/2)[cos2A - cos30]

Numerator of (1) :

cos(A+15)cos(A-15) - sin(A-15)sin(A+15) :

=  (1/2)[cos2A + cos30] - (-1/2)[cos2A - cos30]

=  (1/2)[2cos2A] 

=  cos2A

Denominator of (1) :

sin (A+15)cos(A-15) :

=  (1/2)[2sin(A+15)cos(A-15)]

=  (1/2)[sin2A + sin30]

=  (1/2)[sin2A + (1/2)]

=  (1/4)[2sin2A + 1]

Then, 

(1)----->  =  cos 2A/[(1/4)(2sin2A + 1)]

=  4cos2A / (2sin2A + 1)

Hence it is proved.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More