HOW MANY TERMS OF THE ARITHMETIC SEQUENCE MUST BE ADDED

We have to consider the given sum as Sn. Instead of Sn, we may use one of the formulas given below.

Sn  =  (n/2) [a + l] (or)

Sn  =  (n/2) [2a + (n - 1)d]

a = first term, d = common difference and n = number of terms.

Question 1 :

How many terms of the AP 9, 17, 25,.......... must be taken to give a sum of 636?  

Solution :

Sn =  636 

a  =  9, d  =  17 - 9  =  6

Sn  =  (n/2) [2a + (n - 1)d]

(n/2) [2(9) + (n - 1)8]  =  636

(n/2) [18 + 8n - 8]  =  636

(n/2) [10 + 8n]  =  636

n[5 + 4n]  =  636

5n + 4n2  =  636

4n2 + 5n - 636  =  0

4n2 - 48n + 53n - 636  =  0

4n(n - 12) + 53(n - 12)  =  0

(n - 12) (4n + 53)  =  0

n  =  12

By solving other factor (4n + 53), we get negative value for n, which is not admissible. 

Hence, 12 terms to be added to get the sum 636.

Question 2 :

The first term of an AP is 5, the last term is 45 and the sum is 400. Find the number of terms and common difference. 

Solution :

Given that :

First term (a)  =  5, last term (l)  =  45 and Sn  =  400

Sn  =  (n/2) [a + l]

(n/2) [5 + 45]  =  400

(n/2) [50]  =  400

25n  =  400

n  =  400/25

n  =  16

Hence the given series consist of 16 terms.

Question 3 :

The first and last term of an AP are 17 and 350 respectively.If the common difference is 9, how many terms are there and what is their sum?  

Solution :

Given that :

First term (a)  =  17, last term (l)  =  350 and common difference (d)  =  9 .

Sn  =  (n/2)[a + l]

By applying the values of a and l, we get

Sn  =  (n/2)[17 + 350]

Sn  =  (n/2)(367)  ----(1)

Sn  =  (n/2)[2a + (n - 1)d]

Sn  =  (n/2)[2(17) + (n - 1)(9)]

Sn  =  (n/2)[34 + 9n - 9]

Sn  =  (n/2)[25 + 9n]  -----(2)

(1)  =  (2)

(n/2)(367)  =  (n/2)[25 + 9n] 

25 + 9n  =  367

9n  =  367 - 25

9n  =  342

Divide each side by 9, we get

 n  =  342/9  =  38

So, there are 38 terms in the sequence. In order to find their sum, let us apply the value of n in (1).

Sn  =  (n/2)(367) 

S38  =  (38/2)(367) 

  =  19(367)

S38  =  6973

Hence, the required sum is 6973.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 8)

    Jan 30, 25 09:48 AM

    AP Calculus AB Problems with Solutions (Part - 8)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 29, 25 06:00 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 105)

    Jan 29, 25 05:52 AM

    digitalsatmath106.png
    Digital SAT Math Problems and Solutions (Part - 105)

    Read More