Let z1 and z2 be two complex numbers such that
z1 = x1 + iy1 and z2 = x2 + iy2,
where x1, x2, y1 and y2 are real values.
z1 + z2 = (x1 + iy1) + (x2 + iy2)
= x1 + x2 + iy1 + iy2
= (x1 + x2) + i(y1 + y2)
z1 - z2 = (x1 + iy1) - (x2 + iy2)
= x1 + iy1 - x2 - iy2
= x1 - x2 + iy1 - iy2
= (x1 - x2) + i(y1 - y2)
z1z2 = (x1 + iy1)(x2 + iy2)
= x1x2 + ix1y2 + ix2y1 + i2y1y2
= x1x2 + i(x1y2 + x2y1) + (-1)y1y2
= x1x2 + i(x1y2 + x2y1) - y1y2
= (x1x2 - y1y2) + i(x1y2 + x2y1)
Two complex numbers x + iy and x - iy are conjugates to each other. The conjugate is useful in division of complex numbers. The complex number can be replaced with a real number in the denominator by multiplying the numerator and denominator by the conjugate of the denominator.
This process is similar to rationalizing the denominator to remove surds.
In each of the following examples, write the expression in the form a + bi, where a and b are real numbers.
Example 1 :
(4 + 2i) + (3 + 8i)
Solution :
= (4 + 2i) + (3 + 8i)
= (4 + 3) + (2i + 8i)
= 7 + 10i
Example 2 :
(5 + 7i) + (4 + 6i)
Solution :
= (5 + 7i) + (4 + 6i)
= (5 + 4) + (7i + 6i)
= 9 + 15i
Example 3 :
(5 + 3i) - (2 + 9i)
Solution :
= (5 + 3i) - (2 + 9i)
= 5 + 3i - 2 - 9i
= 3 - 6i
Example 4 :
(9 + 2i) - (6 + 7i)
Solution :
= (9 + 2i) - (6 + 7i)
= 9 + 2i - 6 - 7i
= 3 - 5i
Example 5 :
(9 + 2i) - (6 + 7i)
Solution :
= (9 + 2i) - (6 + 7i)
= 9 + 2i - 6 - 7i
= 3 - 5i
Example 6 :
(8 - 4i)(2 - 3i)
Solution :
= (8 - 4i)(2 - 3i)
= 16 - 24i - 8i + 12i2
= 16 - 32i + 12(-1)
= 16 - 32i - 12
= 4 - 32i
Example 7 :
(2 + 3i)(1 - 4i)
Solution :
= (2 + 3i)(1 - 4i)
= 2 - 8i + 3i - 12i2
= 2 - 5i - 12(-1)
= 2 - 5i + 12
= 14 - 5i
Example 8 :
Solution :
Example 9 :
Solution :
Example 10 :
Find the values of the real numbers x and y, if the following two complex numbers are equal.
(3 - i)x - (2 - i)y + 2i + 5 and 2x + (-1 + 2i)y + 3 + 2i
Solution :
(3 - i)x - (2 - i)y + 2i + 5 = 2x + (-1 + 2i)y + 3 + 2i
3x - ix - 2y + iy + 2i + 5 = 2x - y + 2yi + 3 + 2i
3x - 2y + 5 - ix + iy + 2i = 2x - y + 3 + 2yi + 2i
(3x - 2y + 5) + i(-x + y + 2) = (2x - y + 3) + i(2y + 2)
The complex numbers sides are in standard form a + ib on both sides.
Equating the real parts and imaginary parts,
3x - 2y + 5 = 2x - y + 3 x - y + 2 = 0 ----(1) |
-x + y + 2 = 2y + 2 -x - y = 0 ----(2) |
(1) + (2) :
-2y + 2 = 0
-2y = -2
y = 1
Substitute y = 1 in (2).
-x - 1 = 0
-x = 1
x = -1
Therefore,
x = -1 and y = 1
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 12, 24 10:36 AM
Nov 12, 24 10:06 AM
Nov 10, 24 05:05 AM