HOW TO CHECK IF A GIVEN POINT LIES INSIDE OR OUTSIDE A CIRCLE

x12 + y12 + 2gx1 + 2fy1 + c  >  0 (outside of the circle)

x12 + y12 + 2gx1 + 2fy1 + c  =  0 (on the circle)

x12 + y12 + 2gx1 + 2fy1 + c  <  0 (inside the circle)

Example 1 :

Determine whether the points (-2, 1),(0, 0) and (-4, -3) lie outside, on or inside the circle x2 + y2 − 5x + 2y − 5 = 0 .

Solution :

Equation of the circle :

x2 + y2 − 5x + 2y − 5

Equation of the circle at the point (x1, y1) :

x12 + y12 − 5x1 + 2y1 − 5

at (-2, 1)

  =  (-2)2 + 12 − 5(-2) + 2(1) − 5

  =  5 + 10 + 2 - 5

  =  12 > 0

So, the point (-2, 1) lies outside the circle.

at (0, 0)

  =  02 + 02 − 5(0) + 2(0) − 5

  =  - 5 < 0

So, the point (0, 0) lies inside the circle.

at (-4, -3)

  =  (-4)2 + (-3)2 − 5(-4) + 2(-3) − 5

  =  16 + 9 + 20  - 6 - 5

  =  34 > 0

So, the point (-4, -3) lies outside the circle.

Finding Center and Radius of a Circle

Example 2 :

x2 + (y + 2)2 = 25

Solution :

x2 + (y + 2)2 = 25

(x - 0)2 + (y + 2)2 = 52

(x - h)2 + (y - k)2 = r2

center (h, k)  =  (0, -2)

radius (r)  =  6

Example 3 :

x2 + y2 + 6x - 4y + 4 = 0

Solution :

x2 + y2 + 6x - 4y + 4 = 0

x2 + y2 + 2gx + 2fy + c = 0

2g = 6 ----> g = 3 ----> -g = -3

2f = -4 ----> f = -2 ----> -f = 2

c = 4

center (-g, -f)  =  (-3, 2)

radius (r)  =  √[g2 + f2 - c]

=  √[32 + (-2)2 - 4]

=  √(9 + 4 - 4)

=  √9

=  3 units

Example 4 :

x2 + y2 - x + 2y - 3 = 0

Solution :

x2 + y2 - x + 2y - 3 = 0

x2 + y2 + 2gx + 2fy + c = 0

2g = -1 ----> g = -1/2 ----> -g = 1/2

2f = 2 ----> f = 1 ----> -f = -1

c = -3

center (-g, -f)  =  (1/2, -1)

radius (r)  =  √[g2 + f2 - c]

=  √[(1/2)2 + (-1)2 - (-3)]

=  √(1/4 + 1 + 3)

=  √(1/4 + 4)

=  √(17/2) units

Example 5 :

2x2 + 2y2 - 6x + 4y + 2  =  0

Solution :

2x2 + 2y2 - 6x + 4y + 2  =  0

Divide both sides by 2.

x2 + y2 - 3x + 2y + 1  =  0

x2 + y2 + 2gx + 2fy + c = 0

2g = -3 ----> g = -3/2 ----> -g = 3/2

2f = 2 ----> f = 1 ----> -f = -1

c = 1

center (-g, -f)  =  (3/2, -1)

radius (r)  =  √[g2 + f2 - c]

=  √[(-3/2)2 + 12 - 1]

=  √(9/4 + 1 - 1)

=  √(9/4)

=  3/2 units

Example 6 :

If the equation 3x2 + (3 − p)xy + qy2 - 2px = 8pq represents a circle, find p and q . Also determine the center and radius of the circle.

Solution :

The equation x2 + y2 + 2gx + 2fy + c = 0 is a second degree equation in x and y possessing the following characteristics:

(i) It is a second degree equation in x and y ,

(ii) coefficient of x2 = coefficient of y≠ 0,

(iii) coefficient of xy = 0 .

3x2 + (3 − p) xy + qy2 − 2 px = 8pq 

According to (iii), coefficient of x y  = 0

3 - p  =  0

p  =  3

According to (ii), coefficient of x2 = coefficient of y≠ 0

coefficient of x2 = 3 = coefficient of y

q = 3

By applying the values of p and q in the given equation, we get

3x2 + 3y2 − 6x = 72 

x2 + y2 − 2x = 24 

Center of the circle (-g, -f)

g = -1, f = 0 and c = -24

Center of the circle  =  (1, 0)

Radius of the circle  =  √g2 + f2 - c

  =  √(-1)2 + 02 + 24

  =  √25  =  5

Hence the center and radius of the circle are (1, 0) and 5 respectively.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More