HOW TO CHECK IF GIVEN FOUR POINTS FORM A RECTANGLE

The following steps would be useful to check if four points form a rectangle.

Step 1 :

Draw a rectangle with the given four points. 

Step 2 :

Find the lengths of all the four sides. 

Step 3 :

Check whether the lengths of opposite sides are equal. 

Step 4 :

Using the diagonal, divide the rectangle into two triangles and check whether one of the vertices has right angle using Pythagorean Theorem. 

Example :

Check whether the following four points form a rectangle.

A(-3, -3), B(4, -3), C(4, 2), D(-3, 2)

Solution :

Distance between A and B :

Formula to find the distance between two points :

d = √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = A(-3, -3) and (x2, y2) = B(4, -3).

= √[(4 + 3)2 + (-3 + 3)2]

= √[72 + 0]

= √49

AB = 7 units

Distance between D and C :

= √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = D(-3, 2) and (x2, y2) = C(4, 2).

= √[(4 + 3)2 + (2 - 2)2]

= √[72 + 0]

= √49

DC = 7 units

Distance between A and D :

= √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = A(-3, -3) and (x2, y2) = D(-3, 2).

= √[(-3 + 3)2 + (2 + 3)2]

= √[0 + 52]

= √25

AD = 5 units

Distance between B and C :

= √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = B(4, -3) and (x2, y2) = C(4, 2).

= √[(4 - 4)2 + (2 + 3)2]

= √[0 + 52]

= √25

BC = 5 units

From the above workings, AB = DC and AD = BC. 

Opposite sides are equal. 

In the diagram above, consider ΔABC. 

Distance between B and D :

= √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = B(4, -3) and (x2, y2) = D(-3, 2).

= √[(-3 - 4)2 + (2 + 3)2]

= √[49 + 25]

BD = √74

BD2 = 74

AB = 7 ----> AB2 = 49

AD = 5 ----> AD2 = 25

49 + 25 = 74

AB2 + AD2 = BD2

ΔABC above satisfies Pythagorean Theorem, hence ΔABC is a right triangle with ∠A = 90°. 

Opposite sides are equal and it is proved that one of the vertices has right angle.

So, the given four points form a rectangle. 

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 21, 24 02:20 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 89)

    Dec 20, 24 06:23 AM

    digitalsatmath78.png
    Digital SAT Math Problems and Solutions (Part - 89)

    Read More