HOW TO CHECK IF PAIR OF STRAIGHT LINES INTERSECT

Here we are going to see how to check if pair of straight lines intersect.

If the given pair of straight lines ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 intersect each other, then it must satisfy the condition given below.

abc + 2fgh - af2 - bg2 - ch2  =  0

Point of intersection :

P(hf − bg/ab − h2 , gh − af/ab − h2)

How to Check if Pair of Straight Lines Intersect - Questions

Question 1 :

Show that the equation 2x2 −xy−3y2 −6x + 19y − 20 = 0 represents a pair of intersecting lines. Show further that the angle between them is tan−1(5).

Solution :

2x2 −xy−3y2 −6x + 19y − 20 = 0

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 

a  =  2, h  =  -1/2, b  =  -3, g  =  -3, f = 19/2, c = -20

Condition for intersection of two lines :

abc + 2fgh - af2 - bg2 - ch2  =  0

2(-3)(-20)+2(19/2)(-3)(-1/2)-2(19/2)2-(-3)(-3)2-(-20)(-1/2) =  0

  =  120 + 57/2 - 2(361/4) + 27 + 20(1/4)

  =  120 + 57/2 - 361/2 + 27 + 5

  =  (240 + 57 - 361 + 54 + 10)/2

  =  (361 - 361) / 2

  =  0

Since it satisfies the above condition, the given pair of straight line is intersected.

Now let us find the angle between them.

 θ =  tan-1 |2√(h2- ab)/(a + b)|

 θ =  tan-1 |2√(-1/2)2- 2(-3)/(2 + (-3))|

  =  tan-1 |2√((1/4) + 6)/(-1)|

  =  tan-1 |2√(25/4)|

  =  tan-1 |(2(5)/2)|

  =  tan-1 5

Hence proved.

Question 2 :

Prove that the equation to the straight lines through the origin, each of which makes an angle α with the straight line y = x is x2 − 2xy sec 2α + y2 = 0

Solution :

Equation of the line AB :

y  =  m1 x

m1 x - y  =  0

Equation of the line CD :

y  =  m2 x

m12 x - y  =  0

In order to find the slope of first line, let us find the angle between x-axis and the line AB.

θ  =  45 - α   

m =  tan θ  =  tan (45 - α)  ---(1)

Angle between the line CD and x-axis

θ  =  45 + α   

m =  tan θ  =  tan (45 + α)  ---(2)

tan (45 - α)  =  (tan 45 - tan α)/(1 + tan 45 tan α)

m1  =  (1 - tan α)/(1 + tan α)

tan (45 + α)  =  (tan 45 + tan α)/(1 - tan 45 tan α)

m2  =  (1 + tan α)/(1 - tan α)

Equation of straight lines :

(m1 x - y) (m2 x - y)  =  0

m1m2 x2-m1xy - m2xy  + y2 =  0

m1mxxy(m1 m2) + y2 =  0   ----(3)

mm=  (1 - tan α)/(1 + tan α) + (1 + tan α)/(1 - tan α)

  =  ((1 - tan α)2 + (1 + tan α)2)/(1 + tan α)(1 - tan α)

  =  (1 - 2tan α + tan 2α + 1 + 2tan α + tan 2α)/(1-tan2α)

  =  (2 + 2tan 2α)/(1-tan2α)

  =  2[(1+tan2α)/(1-tan2α)]

  =  2 sec 2α

Note :

cos 2α  =  (1-tan2α) / (1+tan2α)

mm2  =  ((1 - tan α)/(1 + tan α)) ((1 + tan α)/(1 - tan α))

  =  1

By applying the above values in equation 3, we get the required equation.

(1) xxy 2 sec 2α + y2 =  0

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Solving Equations with the Given Roots

    Jan 23, 25 04:57 AM

    Solving Equations with the Given Roots

    Read More

  2. Given Composite Function : How to Find the Inside or Outside Function

    Jan 22, 25 02:43 AM

    How to Find the Inside or Outside Function From the Given Composite Function

    Read More

  3. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 20, 25 09:31 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More