HOW TO EXPAND COMPLEX NUMBERS

Write the following expression in the form a + bi, where a and b are real numbers.

Question 1 :

(3 + 4i)2

Solution :

The given question exactly matches the algebraic identity

(a + b)=  a2 + 2ab + b2

(3 + 4i)2  =  32 + 2(3)(4i) + (4i)2

 =  9 + 24i + 16(-1)

 =  -7 + 24i

Question 2 :

(5 - 2i)2

Solution :

The given question exactly matches the algebraic identity

(a - b)2  =  a2 - 2ab + b2

(5 - 2i)2  =  52 + 2(5)(-2i) + (-2i)2

 =  25 - 20i - 4

 =  25 - 4 - 20i

 =  21 - 20i

Question 3 :

(4 - 7i)2

Solution :

The given question exactly matches the algebraic identity

(a - b)2  =  a2 - 2ab + b2

(4 - 7i)2  =  42 - 2(4)(7i) + (7i)2

 =  16 - 56i + 49i2

 =  16 - 56i + 49(-1)

 =  16 - 56i - 49

=  -33 - 56i

Question 4 :

(5 + √6i)2

Solution :

The given question exactly matches the algebraic identity

(a - b)2  =  a2 - 2ab + b2

(5 + √6i)2  =  52 - 2(5)(√6i) + (√6i)2

 =  25 - 10√6i + 6i2

 =  25 - 10√6i - 6

 =  19 - 10√6i

Question 5 :

(1 + √3i)3

Solution :

The given question exactly matches the algebraic identity

(a + b)3  =  a3 + 3a2 b + 3ab2 + b3

(1 + √3i)3  =  13 + 3(1)2 √3 + 3(1)√32 + √33

 =  13 + 3√3 + 3(3) + 3√3

 =  1 + 6√3 + 9

=  10 + 6√3

Question 6 :

[(1/2) - (√3/2)i]3

Solution :

The given question exactly matches the algebraic identity

(a - b)3  =  a3 - 3a2 b + 3ab2 - b3

[(1/2) - (√3/2)i]3  

=  (1/2)3 - 3(1/2)2 (√3i/2) + 3(1/2)(√3i/2)2 + (√3i/2)3

=  (1/8) - (3√3i/8) - (9/8) - (3√3i/8)

=  (-8/8) - (6√3i/8)

=  -1 - (3√3i/4)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 12, 24 10:36 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 67)

    Nov 12, 24 10:06 AM

    Digital SAT Math Problems and Solutions (Part - 67)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 30)

    Nov 10, 24 05:05 AM

    digitalsatmath24.png
    Digital SAT Math Problems and Solutions (Part - 30)

    Read More