Example 1 :
Find 3√1001 approximately (two decimal places).
Solution :
3√1001 = (1001)1/3 = (1001)1/3
= (1000 + 1)1/3
= (1000)1/3 (1 + (1/1000))1/3
= 10 (1 + (1/1000))1/3
= 10 [1 + (1/3) (1/1000) + ...................]
= 10 [1 + (0.333)(0.001) ...................]
= 10 [1 + 0.000333 ...................]
= 10 [1.000333 ...................]
= 10.0033..........
Hence the approximate value of 3√1001 is 10.0033..........
Example 2 :
Prove that 3√(x3 + 6) − 3√(x3 + 3) is approximately equal to 1/x2 when x is sufficiently large.
Solution :
3√(x3 + 6) = (x3 + 6)1/3 = (x3)1/3 [1 + (6/x3)]1/3
= x [1 + (1/3)(6/x3) + ((1/3)(-2/3))/2 (6/x3)2 + ..............]
= x [1 + (2/x3) + (4/x6) + ..............]
= x + (2/x2) - (4/x5) + .............. ------(1)
3√(x3 + 3) = (x3 + 3)1/3 = (x3)1/3 [1 + (3/x3]1/3
= x [1 + (1/3)(3/x3) + ((1/3)(-2/3)/2)(3/x3)2 + ..............]
= x [1 + (1/x3) + (-1/x6) + ..............]
= x + (1/x2) - (1/x5) + .............. ------(2)
3√(x3 + 6) − 3√(x3 + 3)
= (x+(2/x2)-(4/x5)+ ..............)-(x+(1/x2)-(1/x5) + ..............)
= x - x + (2/x2) - (1/x2)
= 1/x2
Example 3 :
Prove that √(1−x)/(1+x) is approximately equal to 1 − x + x2 when x is very small.
Solution :
√(1−x)/(1+x) = [(1 - x)/(1 + x)]1/2
= [(1 - x)1/2/(1 + x)]1/2
= (1 - x)1/2(1 + x)-1/2
(1 - x)n
(1 - x)1/2 = 1 - (1/2)x + ((1/2)(-1/2)/2!)x2+....................
(1 + x)-1/2 = 1 - (x/2)x - (x2/8)+....................
(1 + x)-n
(1 + x)-1/2 = 1 - (1/2)x + ((1/2)(3/2)/2!)x2+....................
(1 + x)-1/2 = 1 - (x/2) + (3x2/8) +....................
(1 + x)-1/2 (1 + x)-1/2
= (1-(x/2)-(x2/8)+..........)(1 - (x/2)+(3x2/8) +..............)
= 1 - x/2 + 3x2/8 - x/2 + x2/4 - 3x3/16 - x2/8 + x3/16 + ..............
= 1 - [(x/2) + (x/2)] + [(3x2/8) + (x2/4)- (x2/8)
] + .........
= 1 - x + [(3x2+ 2x2-x2)/8]
= 1 - x + (4x2/8)
= 1 - x + x2/2
Hence proved.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 26, 25 07:59 PM
Jan 26, 25 06:56 AM
Jan 25, 25 01:00 AM