FIND THE DERIVATIVES FROM THE LEFT AND RIGHT AT THE GIVEN POINT

How to Find if the Function is Differentiable at the Point ? :

The function is differentiable from the left and right. As in the case of the existence of limits of a function at x0, it follows that

exists if and only if both

exist and f' (x0-)  =   f' (x0+) 

Hence 

if and only if f' (x0-)  =   f' (x0+) . If any one of the condition fails then f'(x) is not differentiable at x0.

Question 1 :

Determine whether the following function is differentiable at the indicated values.

(i) f(x) = x | x | at x = 0

Solution :

f(x) = x | x | 

If x < 0, then f(x) = x (-x)  =  -x

If x > 0, then f(x) = x (x)  =  x

f'(0-)  =  lim x->0- [(f(x) - f(0)) / (x - 0)]

  =  lim x->0- (-x2 - 0) / x

  =  lim x->0- -x

  =  0  -----(1)

f'(0+)  =  lim x->0+ [(f(x) - f(0)) / (x - 0)]

  =  lim x->0+ (x2 - 0) / x

  =  lim x->0+ x

  =  0 -----(2)

f'(0-)  =  f'(0+

Hence the given function is differentiable at the point x = 0.

(ii)  f(x) = |x2 - 1| at x = 1

Solution :

f(x) = |x2 - 1|

If x < 1, then f(x) = -(x2 - 1) 

If x > 1, then  f(x) = (x2 - 1) 

f'(1-)  =  lim x->1- [(f(x) - f(1)) / (x - 1)]

  =  lim x->1- [(-x2 + 1) - (0)] / (x - 1)

  =  lim x->1- [-(x2 - 1) / (x - 1)]

  =  lim x->1- [-(x + 1)(x - 1) / (x - 1)]

=  -2  -----(1)

f'(1+)  =  lim x->1+ [(f(x) - f(1)) / (x - 1)]

  =  lim x->1+ [(x2 - 1) - (0)] / (x - 1)

  =  lim x->1+ [(x + 1)(x - 1) / (x - 1)]

  =  lim x->1+ (x + 1)

=  2  -----(2)

f'(1-)  ≠ f'(1+

Hence the given function is not differentiable at the point x = 1.

(iii)  f(x) = |x| + |x - 1| at x = 0, 1

Solution :

f(x) = |x| + |x - 1|

Check if the given function is continuous at x = 0.

If x < 0, then f(x) = -x - (x - 1)

f(x)  =  -x - x + 1

  =  -2x + 1

If x > 0 and x < 1, then f(x) = x - (x - 1)

f(x)  =  x - x + 1

  =  1

If x > 1, then f(x) = x + (x - 1)

f(x)  =  x + x + 1

  =  2x + 1

f'(0-)  =  lim x->0- [(f(x) - f(0)) / (x - 0)]

  =  lim x->0- [(-2x + 1) - 1] / x

  =  lim x->0- -2x / x

  =  lim x->0- -2

  =  -2  -----(1)

f'(0+)  =  lim x->0+ [(f(x) - f(0)) / (x - 0)]

  =  lim x->0+ [1 - 1] / x

  =  lim x->0- 0 / x

  =  0/0  -----(2)

f'(0-)  ≠ f'(0+

f'(1-)  =  lim x->1- [(f(x) - f(1)) / (x - 1)]

  =  lim x->1- [1 - 1] / (x - 1)

  =  lim x->1- 0 / (x-1)

  =  0 -----(1)

f'(1+)  =  lim x->1+ [(f(x) - f(1)) / (x - 1)]

  =  lim x->1+ [2x + 1 - 3] / (x - 1)

  =  lim x->1+ (2x - 2) / (x - 1)

  =  lim x->1+ 2(x - 1) / (x - 1)

  =  2 -----(2)

f'(1-)  ≠ f'(1+

Hence the given function is not differentiable at the given points.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Solving Trigonometric Equations Problems and Solutions

    Dec 18, 24 10:53 AM

    Solving Trigonometric Equations Problems and Solutions

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 17, 24 10:13 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 88)

    Dec 17, 24 10:07 AM

    digitalsatmath75.png
    Digital SAT Math Problems and Solutions (Part - 88)

    Read More