How to Find if the Function is Differentiable at the Point ? :
The function is differentiable from the left and right. As in the case of the existence of limits of a function at x0, it follows that
exists if and only if both
exist and f' (x0-) = f' (x0+)
Hence
if and only if f' (x0-) = f' (x0+) . If any one of the condition fails then f'(x) is not differentiable at x0.
Question 1 :
Determine whether the following function is differentiable at the indicated values.
(i) f(x) = x | x | at x = 0
Solution :
f(x) = x | x |
If x < 0, then f(x) = x (-x) = -x2
If x > 0, then f(x) = x (x) = x2
f'(0-) = lim x->0- [(f(x) - f(0)) / (x - 0)]
= lim x->0- (-x2 - 0) / x
= lim x->0- -x
= 0 -----(1)
f'(0+) = lim x->0+ [(f(x) - f(0)) / (x - 0)]
= lim x->0+ (x2 - 0) / x
= lim x->0+ x
= 0 -----(2)
f'(0-) = f'(0+)
Hence the given function is differentiable at the point x = 0.
(ii) f(x) = |x2 - 1| at x = 1
Solution :
f(x) = |x2 - 1|
If x < 1, then f(x) = -(x2 - 1)
If x > 1, then f(x) = (x2 - 1)
f'(1-) = lim x->1- [(f(x) - f(1)) / (x - 1)]
= lim x->1- [(-x2 + 1) - (0)] / (x - 1)
= lim x->1- [-(x2 - 1) / (x - 1)]
= lim x->1- [-(x + 1)(x - 1) / (x - 1)]
= -2 -----(1)
f'(1+) = lim x->1+ [(f(x) - f(1)) / (x - 1)]
= lim x->1+ [(x2 - 1) - (0)] / (x - 1)
= lim x->1+ [(x + 1)(x - 1) / (x - 1)]
= lim x->1+ (x + 1)
= 2 -----(2)
f'(1-) ≠ f'(1+)
Hence the given function is not differentiable at the point x = 1.
(iii) f(x) = |x| + |x - 1| at x = 0, 1
Solution :
f(x) = |x| + |x - 1|
Check if the given function is continuous at x = 0.
If x < 0, then f(x) = -x - (x - 1)
f(x) = -x - x + 1
= -2x + 1
If x > 0 and x < 1, then f(x) = x - (x - 1)
f(x) = x - x + 1
= 1
If x > 1, then f(x) = x + (x - 1)
f(x) = x + x + 1
= 2x + 1
f'(0-) = lim x->0- [(f(x) - f(0)) / (x - 0)]
= lim x->0- [(-2x + 1) - 1] / x
= lim x->0- -2x / x
= lim x->0- -2
= -2 -----(1)
f'(0+) = lim x->0+ [(f(x) - f(0)) / (x - 0)]
= lim x->0+ [1 - 1] / x
= lim x->0- 0 / x
= 0/0 -----(2)
f'(0-) ≠ f'(0+)
f'(1-) = lim x->1- [(f(x) - f(1)) / (x - 1)]
= lim x->1- [1 - 1] / (x - 1)
= lim x->1- 0 / (x-1)
= 0 -----(1)
f'(1+) = lim x->1+ [(f(x) - f(1)) / (x - 1)]
= lim x->1+ [2x + 1 - 3] / (x - 1)
= lim x->1+ (2x - 2) / (x - 1)
= lim x->1+ 2(x - 1) / (x - 1)
= 2 -----(2)
f'(1-) ≠ f'(1+)
Hence the given function is not differentiable at the given points.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 15, 25 07:19 PM
Jan 14, 25 12:34 AM
Jan 14, 25 12:23 AM