HOW TO FIND THE LENGTH OF LATUS RECTUM OF A PARABOLA

Consider the graph of a parabola shown below.

The parabola opens to the right with vertex (0, 0).

The equation of the parabola shown above in standard form :

y2 = 4ax

Latus rectum LL' passes through the focus (a, 0).

Hence the point L is (a, y1).

There fore,

y12 = 4a(a)

y12 = 4a2

Take square root on both sides.

y1 = ±√(4a2)

y1 = ±2a

y1 = 2a or -2a

The end points of latus rectum are (a, 2a) and (a,-2a).

Therefore length of the latus rectum LL' = 4a.

Equations of Parabolas in Standard Form with Vertex (0, 0)

y2 = 4ax ----> opens to the right

y2 = -4ax ----> opens to the left

x2 = 4ay ----> opens up

x2 = -4ay ----> opens down

Equations of Parabolas in Standard Form with Vertex (h, k)

(y - k)2 = 4a(x - h) ----> opens to the right

(y - k)2 = -4a(x - h) ----> opens to the left

(x - h)2 = 4a(y - k) ----> opens up

(x - h)2 = -4a(y - k) ----> opens down

Find the length of latus rectum of the following parabolas :

Example 1 :

x2 = -4y

Solution :

The given equation equation of the parabola in standard form.

Comparing x2 = -4y and x2 = -4ay,

4a = 4

So, the length of latus rectum is 4 units.

Example 2 :

y2 - 8x + 6y + 9 = 0

Solution :

The given equation of the parabola is not in standard form.

Write the equation of the parabola in standard form. 

y2 - 8x + 6y + 9 = 0

y2 + 6y = 8x - 93

y2 + 2(y)(3) = 8x - 9

y2 + 2(y)(3) + 32 - 32 = 8x - 9

(y + 3)2 - 32 = 8x - 9

(y + 3)2 - 9 = 8x - 9

(y + 3)2 = 8x

(y + 3)2 = 8(x - 0)

Now, the equation of the parabola is in standard form.

Comparing (y - k)2 = 4a(x - h) and (y + 3)2 = 8(x - 0),

4a = 8

So, the length of latus rectum is 8 units.

Example 3 :

x- 2x + 16y + 17 = 0

Solution :

The given equation of the parabola is not in standard form.

Write the equation of the parabola in standard form. 

x- 2x = -16y - 17

x2 - 2(x)(1) = -16y - 17

x2 - 2(x)(1) + 12 - 12 = -16y - 17

(x - 1)2 - 12 = -16y - 17

(x - 1)2 - 1 = -16y - 17

(x - 1)2 = -16y - 16

(x - 1)2 = -16(y + 1)

Now, the equation of the parabola is in standard form.

Comparing (x - h)2 = -4a(y - k) and (x - 1)2 = -16(y + 1),

4a = 16

So, the length of latus rectum is 16 units.

Example 4 :

y = 2x2+ 3x + 4

Solution :

The given equation of the parabola is not in standard form.

Write the equation of the parabola in standard form. 

y = 2x2+ 3x + 4

or

2x2+ 3x = y - 4

4a = 1/2 or 0.5

So, the length of latus rectum is 0.5 units.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (part - 92)

    Dec 27, 24 10:53 PM

    digitalsatmath80.png
    Digital SAT Math Problems and Solutions (part - 92)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 27, 24 10:48 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. AP Calculus AB Problems with Solutions

    Dec 26, 24 07:41 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions

    Read More