HOW TO FIND MIDDLE TERM OF AN EXPANSION

In this section, you will learn how to find the middle term of an expansion.

To find a particular term of an expansion, we can use the formula given below.

T(r+1)ncr x(n-r) ar

The number of terms in the expansion of (x + a)depends upon the index n. The index is either even (or) odd.

Let us see how to find the middle term.

Case (i) : n is even 

The number of terms in the expansion is (n + 1), which is odd. Hence, there is only one middle term and it is given by T(n/2) + 1

Case (ii) : n is odd

The number of terms in the expansion is (n + 1), which is even. Hence, there are two middle terms and they are given by T(n + 1)/2 and T(n + 3)/2

Examples

Example 1 :

Find the middle term in the expansion of (3x - 2x2/3)8.

Solution :

Here n = 8, that is even

So, the middle term  = T(n/2) + 1

  =  T (8/2) + 1

  =  T (4 + 1)  ==>  T 5

General term : 

T(r+1) =  ncr x(n-r) ar

x = 3x, a = 2x2/3,  r = 4 and n = 8

T (4 + 1)  =  8c4 (3x)(8-4) (2x2/3)4

  =  (8  7  6  5)/ (4  3  2  1)(3x)4 (2x2/3)4

  =  (8  7  6 ⋅ 5)/ (4  3  2  1)(3x)4 (2x2/3)4

  =  70(81x4)(16x8/81)

  =  70(16)x12

  =  1120 x12

Example 2 :

Find the middle term in the expansion of (b/x  - x/b)16.

Solution :

Here n = 16, that is even

So, the middle term  = T(n/2) + 1

  =  T (16/2) + 1

  =  T (8 + 1)  ==>  T 9

General term : 

T(r+1) =  ncr x(n-r) ar

x = b/x, a = x/b,  r = 8 and n = 16

(8 + 1)  =  16c8 (b/x)(16-8) (x/b)8

  =  16c8 (b/x)8 (x/b)8

  = 16c8

Example 3 :

Find the middle term in the expansion of (a/x  - x)16.

Solution :

Here n = 16, that is even

So, the middle term  = T(n/2) + 1

  =  T (16/2) + 1

  =  T (8 + 1)  ==>  T 9

General term : 

T(r+1) =  ncr x(n-r) ar

x = a/x, a = x,  r = 8 and n = 16

(8 + 1)  =  16c8 (a/x)(16-8) (x)8

  =  16c8 a8 x-8 

  =  16c8 a8 x-4

  =  16c8 a8/x4

Example 4 :

Find the middle term in the expansion of (x  - 2y)13.

Solution :

Here n = 13, that is even

So, the middle term  =  T(n + 1)/2 and T(n + 3)/2

T(n + 1)/2   =   T (13+1)/2  ==>  T 7

General term : 

T(r+1) =  ncr x(n-r) ar

x = x, a = -2y,  r = 6 and n = 13

(6 + 1)  =  13c6 (x)(13-6) (-2y)6

  =  13c6 x7 (-2)y6

  =  13c6 x7 2y6

T(n + 3)/2   =   T (13+3)/2  ==>  8

x = x, a = -2y,  r = 7 and n = 13

(7 + 1)  =  13c6 (x)(13-7) (-2y)7

  =  13c6 x6 (-2)y7

  = - 13c6 x6 2y7

Example 5 :

Find the middle term in the expansion of (x  + 2/x2)17.

Solution :

Here n = 17, that is even

So, the middle term  =  T(n + 1)/2 and T(n + 3)/2

T(n + 1)/2   =   T (17+1)/2  ==>  9

General term : 

T(r+1) =  ncr x(n-r) ar

x = x, a = 2/x2,  r = 8 and n = 17

(8 + 1)  =  17c8 (x)(17-8) (2/x2)8

  =  17c8 x9 (2)x-16

  =  17c8 x9-16 28

  =  17c8 x-7 28

  =  17c8 (28/x7) 

T(n + 3)/2   =   T (17+3)/2  ==>  10

x = x, a = 2/x2,  r = 9 and n = 17

(9 + 1)  =  17c9 (x)(17-9) (2/x2)9

  =  17c9 (x)(29/x18)  

=  17c9 (x)(29x-18)

=  17c9 (x)8-18 29

=  17c9 x-10 29

=  17c9 (29/x10)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More