HOW TO FIND RADIUS WHEN LENGTH OF TWO PARALLEL CHORDS ARE GIVEN

Here we are going to see some examples problems on finding radius when length of two parallel chords are given.

Example 1 :

AB and CD are two parallel chords of a circle which are on either sides of the centre. Such that AB = 10 cm and CD = 24 cm. Find the radius if the distance between AB and CD is 17 cm.

Solution :

Consider the right triangles OEB and OFD,

In triangle OEB,

OB2  =  OE2 + EB2

OB2  =  x2 + 52  ---(1)

In triangle OFD,

OD2  =  OF2 + FD2

OD2 = (17-x)2 + 122 ---(2)

OB = OD (radius of the given circle)

(1)  =  (2)  

x2 + 52  =  (17-x)2 + 122

x2 + 52  =  172 + x2 - 2(17) x + 122

x2 + 25  =  289 + x2 - 34x + 144

x2 - x2 + 34x + 25 - 144 - 289  =  0

34x - 408  =  0

34(x - 12)  =  0

x  =  12 cm

By applying the value of x in the 1st equation, we get

OB2  =  122 + 52 

OB2  =  144 + 25  =  169

OB  =  √169  =  13 cm

Example 2 :

In the figure given below, AB and CD are two parallel chords of a circle with centre O and radius 5 cm such that AB = 6 cm and CD = 8 cm. If OP  AB and CD = OQ determine the length of PQ.

Solution :

Here we have two right triangles,

Triangle OPB and triangle OQD.

OB =  OD  =  radius of the circle  =  5 cm

In Δ OPB,

OB2  =  OP2 + PB2

OB2  =  OP2 + PB2

52  =  OP2 + 32

OP2  =  25 - 9

OP2  =  16

OP  =  √16

OP  =  4 cm

OD2  =  OQ2 + QD2

52  =  OQ2 + 42

25  =  OQ2 + 16

OQ2  =  25 - 16

OQ2  =  9

OQ  =  √9

OQ  =  3 cm

PQ  =  OP - OQ

  =  4 - 3

  =  1 cm

Hence the length of PQ is 1 cm

Example 3 :

In the figure given below, AB and CD are two parallel chords of a circle with centre O and radius 5 cm. Such that AB = 8 cm and CD = 6 cm. If OP = AB and OQ   CD.determine the length PQ.

Solution : 

Consider the triangles APO and COQ

OA  =  OC  =  radius of the circle  =  5 cm

AP  =  PB  =  4 cm

CQ  =  QD  =  3 cm

In triangle APO,

OA2  =  AP2 + PO2

52  =  42 + PO2

 PO  =  √(25 - 16)

 PO  =  √9

PO  =  3 cm

In triangle COQ,

OC2  =  OQ2 + CQ2

52  =  OQ2 + 32

OQ  =  √(25 - 9)

OQ  =  √16

OQ  =  4 cm

PQ  =  PO + OQ

  =  3 + 4

  =  7 cm

Hence the length of PQ is 7 cm.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 8)

    Jan 30, 25 09:48 AM

    AP Calculus AB Problems with Solutions (Part - 8)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 29, 25 06:00 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 105)

    Jan 29, 25 05:52 AM

    digitalsatmath106.png
    Digital SAT Math Problems and Solutions (Part - 105)

    Read More