Let d1 and d2 be the lengths of the diagonals of a rhombus.
Formula for area of a rhombus :
If the four vertices of a rhombus are given, find the length of each diagonal using distance formula and find the area of the rhombus using the formula given above.
Distance between the two points (x1, y1) and (x2, y2) :
Example 1 :
Find the area of a rhombus with the following vertices taken in order.
(1, 4), (5, 1), (1, -2), (-3, 1)
Solution :
Length of of diagonal d1 :
d1 = √[(x2 - x1)2 + (y2 - y1)2]
Substitute (x1, y1) = (1, 4) and (x2, y2) = (1, -2).
d1 = √[(1 - 1)2 + (-2 - 4)2]
= √[0 + (-6)2]
= √36
= 6
Length of of diagonal d2 :
d2 = √[(x2 - x1)2 + (y2 - y1)2]
Substitute (x1, y1) = (5, 1) and (x2, y2) = (-3, 1).
d2 = √[(-3 - 5)2 + (1 - 1)2]
= √[(-8)2 + 0]
= √64
= 8
Area of rhombus :
= (1/2) x d1 x d2
Substitute d1 = 8 and d2 = 6.
= (1/2) x 8 x 6
= 24 square units
Example 2 :
Find the area of a rhombus with the following vertices taken in order.
(3, 0), (4, 5), (-1, 4), (-2, -1)
Solution :
Length of of diagonal d1 :
d1 = √[(x2 - x1)2 + (y2 - y1)2]
Substitute (x1, y1) = (3, 0) and (x2, y2) = (-1, 4).
d1 = √[(-1 - 3)2 + (4 - 0)2]
= √[(-4)2 + 42]
= √[16 + 16]
= √32
= √(2 x 16)
= 4√2
Length of of diagonal d2 :
d2 = √[(x2 - x1)2 + (y2 - y1)2]
Substitute (x1, y1) = (4, 5) and (x2, y2) = (-2, -1).
d2 = √[(-2 - 4)2 + (-1 - 5)2]
= √[(-6)2 + (-6)2]
= √[36 + 36]
= √72
= √(2 x 36)
= 6√2
Area of rhombus :
= (1/2) x d1 x d2
Substitute d1 = 4√2 and d2 = 6√2.
= (1/2) x 4√2 x 6√2
= 24 square units
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 30, 25 09:48 AM
Jan 29, 25 06:00 AM
Jan 29, 25 05:52 AM