Example 1 :
Find the length of the medians of the triangle whose vertices are (1 , -1) (0, 4) and (-5, 3)
Solution :
Let A (1, -1) B (0, 4) and C (-5, 3) are the points vertices of the triangle
Let D, E and F are the midpoints of the sides AB, BC and CA respectively
Midpoint of AB = (x₁+x₂)/2 , (y₁+y₂)/2
= (1+0)/2 , (-1+4)/2
= D (1/2, 3/2)
Midpoint of BC = (x₁+x₂)/2 , (y₁+y₂)/2
= (0+(-5))/2 , (4+3)/2
= (0-5/2 , 7/2)
= E (-5/2, 7/2)
Midpoint of CA = (x₁+x₂)/2 , (y₁+y₂)/2
= (-5+1)/2 , (3+(-1))/2
= (-4/2 , 2/2)
= F (-2, 1)
Length of the median AD = √(x₂-x₁)² + (y₂-y₁)²
A (1, -1) and D (1/2,3/2)
= √(1+5/2)² + (-1-7/2)²
= √(7/2)² + (-9/2)²
= √(49/4)+(81/4)
= √(49+81)/4
= √130/4
= √130/2
Length of the median BE = √(x₂-x₁)² + (y₂-y₁)²
B (0, 4) and E (-5/2, 7/2)
= √(-2-0)² + (1-4)²
= √(-2)² + (-3)²
= √4+9
= √13
Length of the median CF = √(x₂-x₁)² + (y₂-y₁)²
C (-5, 3) and F (-2, 1)
= √((1/2)+5)² + ((3/2)-3)²
= √(11/2)² + (-3/2)²
= √(121/4)+(9/4)
= √(121 + 9)/4
= √130/4
= √130/2
Hence length of medians AD, BE and CF are √130/2, √13 and √130/2.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 27, 24 10:53 PM
Dec 27, 24 10:48 PM
Dec 26, 24 07:41 AM