HOW TO FIND THE MISSING COORDINATES IF THREE POINTS LIE ON THE LINE

Here we are going to see, how to find the missing coordinates if three points lie on the same line.

Slope :

If (x1,y1) and (x2,y2) are any two points on a line, with x1x2, then the slope of the line is

(y2 − y1) / (x2 − x1)

We will get the same slope for any two points lie on the same line.

Practice Questions

Question 1 :

Find a number t such that the point (−2, t) is on the line containing the points (5,−2) and (10,−8).

Answer :

Slope of the line passing through the points (-2, t) and (5, -2)  =  Slope of the line passing through the points (5, -2) and (10, -8).

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (-2, t) and (x2, y2)  ==> (5, -2)  

m  =  (-2 - t)/(5 + 2)

m  =  (-2 - t)/7  ----(1)

(x1, y1)  ==>  (5, -2) and (x2, y2)  ==> (10, -8)  

m  =  (-8 + 2)/(10 - 5)

m  =  -6/5 ----(2)

-(2 + t)/7  =  -6/5

5(2 + t)  =  42

10 + 5t  =  42

5t  =  42 - 10

5t  =  32

t  =  32/5

Question 2 :

Find a number t such that the point (t, 2t) is on the line containing the points (3,−7) and (5,−15).

Answer :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (t, 2t) and (x2, y2)  ==> (3, -7)  

m  =  (-7 - 2t)/(3 - t) ---(1)

(x1, y1)  ==>  (3, -7) and (x2, y2)  ==> (5, -15)  

m  =  (-15 + 7)/(5 - 3)

m  =  -8/2

m  =  -4----(2)

(-7 - 2t)/(3 - t)  =  4

-7 - 2t  =  4(3 - t)

-7 - 2t  =  6 - 4t

-2t + 4t  =  6 + 7

2t  =  13

t  =  13/2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 12, 24 10:36 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 67)

    Nov 12, 24 10:06 AM

    Digital SAT Math Problems and Solutions (Part - 67)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 30)

    Nov 10, 24 05:05 AM

    digitalsatmath24.png
    Digital SAT Math Problems and Solutions (Part - 30)

    Read More