HOW TO FIND THE MISSING COORDINATES IF THREE POINTS LIE ON THE LINE

Here we are going to see, how to find the missing coordinates if three points lie on the same line.

Slope :

If (x1,y1) and (x2,y2) are any two points on a line, with x1x2, then the slope of the line is

(y2 − y1) / (x2 − x1)

We will get the same slope for any two points lie on the same line.

Practice Questions

Question 1 :

Find a number t such that the point (−2, t) is on the line containing the points (5,−2) and (10,−8).

Answer :

Slope of the line passing through the points (-2, t) and (5, -2)  =  Slope of the line passing through the points (5, -2) and (10, -8).

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (-2, t) and (x2, y2)  ==> (5, -2)  

m  =  (-2 - t)/(5 + 2)

m  =  (-2 - t)/7  ----(1)

(x1, y1)  ==>  (5, -2) and (x2, y2)  ==> (10, -8)  

m  =  (-8 + 2)/(10 - 5)

m  =  -6/5 ----(2)

-(2 + t)/7  =  -6/5

5(2 + t)  =  42

10 + 5t  =  42

5t  =  42 - 10

5t  =  32

t  =  32/5

Question 2 :

Find a number t such that the point (t, 2t) is on the line containing the points (3,−7) and (5,−15).

Answer :

Slope m  =  (y2 - y1)/ (x2 - x1)

(x1, y1)  ==>  (t, 2t) and (x2, y2)  ==> (3, -7)  

m  =  (-7 - 2t)/(3 - t) ---(1)

(x1, y1)  ==>  (3, -7) and (x2, y2)  ==> (5, -15)  

m  =  (-15 + 7)/(5 - 3)

m  =  -8/2

m  =  -4----(2)

(-7 - 2t)/(3 - t)  =  4

-7 - 2t  =  4(3 - t)

-7 - 2t  =  6 - 4t

-2t + 4t  =  6 + 7

2t  =  13

t  =  13/2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 150)

    Apr 25, 25 11:46 AM

    Digital SAT Math Problems and Solutions (Part - 150)

    Read More

  2. AP Calculus AB Problems with Solutions (Part - 19)

    Apr 24, 25 11:10 PM

    AP Calculus AB Problems with Solutions (Part - 19)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 18)

    Apr 24, 25 11:06 PM

    apcalculusab17.png
    AP Calculus AB Problems with Solutions (Part - 18)

    Read More