HOW TO FIND THE VERTICES OF A TRIANGLE IF THE MIDPOINTS ARE GIVEN

Let D(x1, y1), E(x2, y2) and C(x3, y3) be the mid points of the sides AB, BC and CA of ΔABC. 

Then, the vertices of ΔABC can be found as shown below.

A(x+ x- x2, y+ y- y2)

B(x+ x- x3, y+ y2 - y3)

C(x+ x- x1, y+ y3 - y1)

Example 1 :

The mid-points of the sides of a triangle are (5, 1), (3, -5) and (-5, -1). Find the coordinates of the vertices of the triangle. 

Solution :

Let D, E and F be the mid points of the sides AB, BC and CA of ΔABC.

D(x1, y1) = (5, 1)

E(x2, y2) = (3, -5)

F(x3, y3= (-5, -1)

Vertex A :

A(x+ x- x2, y+ y- y2)

A(5 - 5 - 3, 1 - 1 - (-5))

A(-3, 5)

Vertex B :

B(x+ x- x3, y+ y2 - y3)

B(5 + 3 - (-5), 1 - 5 - (-1))

B(8 + 5, 1 - 5 + 1)

B(13, -3)

Vertex C :

C(x+ x- x1, y+ y3 - y1)

C(3 - 5 - 5, -5 - 1 - 1)

C(3 - 10, -5 - 2)

C(-7, -7)

Example 2 :

The mid-points of the sides of a triangle are (5, 3), (4, 0) and (2, 2). Find the coordinates of the vertices of the triangle. 

Solution :

Let D, E and F be the mid points of the sides AB, BC and CA of ΔABC.

D(x1, y1) = (5, 3)

E(x2, y2) = (4, 0)

F(x3, y3= (2, 2)

Vertex A :

A(x+ x- x2, y+ y- y2)

A(5 + 2 - 4, 3 + 2 - 0)

A(3, 5)

Vertex B :

B(x+ x- x3, y+ y2 - y3)

B(5 + 4 - 2, 3 + 0 - 2)

B(7, 1)

Vertex C :

C(x+ x- x1, y+ y3 - y1)

C(4 + 2 - 5, 0 + 2 - 3)

C(1, -1)

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 21, 24 06:23 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 74)

    Nov 20, 24 08:12 AM

    digitalsatmath60.png
    Digital SAT Math Problems and Solutions (Part - 74)

    Read More