HOW TO FIND WHETHER THE PARABOLA INTERSECTS X AXIS WITHOUT GRAPH

We may find number of points where the parabola intersects the x-axis, using the formula for discriminant.

Condition

Number of intersecting points

b2 − 4ac > 0

b2 − 4ac = 0

b2 − 4ac < 0

Intersects x-axis in two places

Touches x-axis at only one point

does not intersect x-axis

Question 1 :

Without sketching the graphs, find whether the graphs of the following functions will intersect the x-axis and if so in how many points.

(i)   y = x2 + x + 2

Solution :

Discriminant  =  b2 − 4ac

a =  1, b = 1 and c = 2

b2 − 4ac  =  (1)2 − 4(1)(2)

  =  1 - 8

  =  -7 < 0

Does not intersect the x-axis.

(ii) y = x2 − 3x − 7

Solution :

Discriminant  =  b2 − 4ac

a =  1, b = -3 and c = -7

b2 − 4ac  =  (-3)2 − 4(1)(-7)

  =  9 + 28

  =  36 > 0

Hence the curve intersects x-axis at two points.

(iii) y = x2 + 6x + 9

Solution :

Discriminant  =  b2 − 4ac

a =  1, b = 6 and c = 9

b2 − 4ac  =  (6)2 − 4(1)(9)

  =  36 - 36

  =  0 

Hence the curve does not intersect x-axis at any point.

Question 2 :

Write f(x) = x2 + 5x + 4 in completed square form.

Solution :

  =   x2 + 5x + 4

Multiply and divide the coefficient of x by 2.

  =   x2 + (2/2) ⋅ ⋅ x + 4

  =   x2 + 2 ⋅ x ⋅ (5/2) + (5/2)2 - (5/2)2 + 4

  =   (x + (5/2))2 - (25/4) + 4

  =   (x + (5/2))2 + (16 - 25)/4

  =   (x + (5/2))2 + (-9)/4

  =   (x + (5/2))2 - (3/2)2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More