To know the formulas used in integration, please visit the page "Integration Formulas for Class 12".
∫(√a2 - x2) dx = (x/2)(√a2 - x2) + (a2/2) sin-1(x/a) + c
∫(√x2-a2) dx = (x/2)(√x2-a2)-(a2/2) log (x+√(x2-a2) + c
∫(√x2+a2) dx = (x/2)(√x2+a2)+(a2/2) log (x+√(x2+a2) + c
Question 1 :
Evaluate the following with respect to "x".
√(x2 + 2x + 10)
Solution :
∫ √(x2 + 2x + 10) dx
x2 + 2x + 10 = x2 + 2x(1) + 12 - 12 + 10
= (x + 1)2 - 1 + 10
= (x + 1)2 + 9
= (x + 1)2 + 32
∫ √(x2 + 2x + 10) dx = ∫√[(x + 1)2 + 32] dx
= ((x+1)/2)√(x2+2x+10) + (9/2)log (x+√(x2+2x+10)) + c
Question 2 :
Evaluate the following with respect to "x".
√(x2 - 2x - 3)
Solution :
√(x2 - 2x - 3) dx
x2 - 2x - 3 = x2 - 2x(1) + 12 - 12 -3
= (x - 1)2 - 1 - 3
= (x - 1)2 - 4
= (x - 1)2 - 22
∫ √(x2 - 2x - 3) dx = ∫√[(x - 1)2 - 22] dx
= ((x-1)/2)√(x2 - 2x - 3) - (4/2)log (x-1+√(x2-2x-3)) + c
= ((x-1)/2)√(x2 - 2x - 3) - 2 log (x-1 + √(x2 - 2x - 3)) + c
Question 3 :
Evaluate the following with respect to "x".
√(6 - x)(x - 4)
Solution :
√(6 - x)(x - 4) dx
(6 - x)(x - 4) = 6x - 24 - x2 + 4x
= -x2 + 10x - 24
= -[x2 - 10x + 24]
= -[x2 - 2x(5) + 52 - 52 + 24]
= -[(x-5)2 - 25 + 24]
= -[(x-5)2 - 1]
= 12 - (x-5)2
∫(√a2-x2) dx = (x/2)(√a2-x2)+(a2/2) sin-1(x/a) + c
∫√(-x2 + 10x - 24) dx = ∫√[12 + (x-5)2] dx
= ((x-5)/2)√(-x2 + 10x - 24)+(1/2)sin-1((x-5)/1) + c
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 21, 24 06:23 AM
Nov 21, 24 06:13 AM
Nov 20, 24 08:12 AM