Question :
Find the least value of the positive integer n for which (√3 + i)n (i) real (ii) purely imaginary.
Solution :
(i) Purely real
If n = 1
= (√3 + i)1
= (√3 + i)
If n = 2
= (√3 + i)2
= √32 + i2 + i2√3
= 2 + i 2√3
If n = 3
= (√3 + i)3
= √33 + 9i + 3√3(-1) - i
= 3√3 + 9i - 3√3 - i
= 8i (purely imaginary)
If n = 6
= (√3 + i)6
= {(√3 + i)3}2
= (8i)2
= 64 i2
= -64 (purely real)
Hence the least value of n is 6 to make (√3 + i)n as purely real, make it as purely imaginary, we have to put n = 3.
Question 2 :
Show that (i) (2 + i√3)10 - (2 - i√3)10 is purely imaginary
Solution :
Let z = (2 + i√3)10, then z bar = (2 - i√3)10
By using properties of conjugate, we get
(z - z bar)/2 = Im (z)
Hence the given is purely imaginary.
(ii) [(19 - 7i)/(9 + i)]12 + [(20 - 5i)/(7 - 6i)]12 is real
Solution :
Let z = (19 - 7i)/(9 + i)
= [(19 - 7i)/(9 + i)][(9 - i)/(9 - i)]
= [(19 - 7i)(9 - i)/(9 + i)(9 - i)]
= (171 - 19i - 63i + 7i2) / (81 - (1))
= (164 - 82i) / 82
z = 2 - i
(20 - 5i)/(7 - 6i)
= [(20 - 5i)/(7 - 6i)] [(7 + 6i)/(7 + 6i)]
= [(20 - 5i)(7 + 6i)/(7 - 6i) (7 + 6i)]
= (140 + 120i - 35i - 30i2)/(49 - 36(-1))
= (140 + 120i - 35i + 30)/(49 + 36)
= (170 + 85i)/85
z bar = 2 + i
By adding a complex number and its conjugate, we get the real part of the complex number.
Hence the sum of above complex numbers is purely real.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 23, 24 10:01 AM
Nov 23, 24 09:45 AM
Nov 21, 24 06:13 AM