HOW TO SHOW THAT GIVEN COMPLEX NUMBER IS PURELY REAL AND IMAGINARY

Question :

Find the least value of the positive integer n for which (3 + i)(i) real (ii) purely imaginary.

Solution : 

(i)  Purely real 

If n = 1

   =  (3 + i)1

  =   (3 + i)

If n = 2

   =  (3 + i)2

  =   32 + i2 + i23

  =   2 + i 23

If n = 3

   =  (3 + i)3

  =   33 + 9i + 33(-1) - i

  =   33 + 9i - 33 - i

=  8i (purely imaginary)

If n = 6

   =  (3 + i)6

   =  {(3 + i)3}2

=  (8i)2

=  64 i2

=  -64 (purely real)

Hence the least value of n is 6 to make (3 + i)n as purely real, make it as purely imaginary, we have to put n = 3.

Question 2 :

Show that (i) (2 + i3)10(2 - i3)10 is purely imaginary

Solution :

Let z = (2 + i3)10, then z bar = (2 - i3)10

By using properties of conjugate, we get 

(z - z bar)/2  =  Im (z)

Hence the given is purely imaginary.

(ii)  [(19 - 7i)/(9 + i)]12 + [(20 - 5i)/(7 - 6i)]12 is real

Solution :

Let z = (19 - 7i)/(9 + i)

  =  [(19 - 7i)/(9 + i)][(9 - i)/(9 - i)]

  =  [(19 - 7i)(9 - i)/(9 + i)(9 - i)]

  =  (171 - 19i - 63i + 7i2) / (81 - (1))

  =  (164 - 82i) / 82

z  =  2 - i

(20 - 5i)/(7 - 6i)

  =  [(20 - 5i)/(7 - 6i)] [(7 + 6i)/(7 + 6i)]

  =  [(20 - 5i)(7 + 6i)/(7 - 6i) (7 + 6i)]

  =  (140 + 120i - 35i - 30i2)/(49  - 36(-1))

  =  (140 + 120i - 35i + 30)/(49  + 36)

  =  (170 + 85i)/85

z bar  =  2 + i

By adding a complex number and its conjugate, we get the real part of the complex number.

Hence the sum of above complex numbers is purely real.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 62)

    Nov 05, 24 11:16 AM

    Digital SAT Math Problems and Solutions (Part - 62)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 05, 24 11:15 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Worksheet on Proving Trigonometric Identities

    Nov 02, 24 11:58 PM

    tutoring.png
    Worksheet on Proving Trigonometric Identities

    Read More