HOW TO SOLVE QUADRATIC EQUATIONS BY COMPLETING THE SQUARE

Step 1 :

In the given quadratic equation ax2 + bx + c = 0, divide the complete equation by a (coefficient of x2). 

If the coefficient of x2 is 1 (a = 1), the above process is not required. 

Step 2 :

Move the constant term to the right side of the equation.

Step 3 :

Take square of half of the coefficient of x and add it on both sides.

Examples :

6x should be written as 2(3)(x).

5x should be written as 2(x)(5/2). 

Step 4 :

Now we can compare the terms in the left side with any one of the algebraic identity

a2+2ab+b2 or  a2-2ab+b2.

So, we can write it as (a+b)2 or (a-b)2.

Step 5 :

By taking square roots on both sides, we can continue simplification and get solution.

If possible, solve for x using ‘completing the square’ :

Example 1 :

x2 + 2x  =  5

Solution :

The coefficient of x2 is 1, so we dont have to divide the entire equation.

x2 + 2x  =  5

Half of the coefficient of x(2/2) is 1.

x2 + 2x + 12  =  5 + 12

x2 + 2x + 1  =  6

(x + 1)2  =  6

Taking square roots on both sides, we get

(x + 1)  =  ±6

x + 1  =  6

x  =  6-1

x + 1  =  -6

x  =  -6-1

So, solution are 6-1 and -6-1.

Example 2 :

x2 - 2x  =  - 7

Solution :

x2 - 2x  =  - 7

Coefficient of x2 is 1. So dividing the entire equation is not required.

Coefficient of x is -2, half of it  =  -1

x2 - 2x + (-1)2  =  - 7 + (-1)2

x2 - 2x + 1  =  - 7 + 1

x2 - 2x + 1  =  - 6

(x - 1)2  =  - 6

So, the system has no real solution.

Example 3 :

x2 - 6x  =  - 3

Solution :

x2 - 6x  =  - 3

Coefficient of x2 is 1. So dividing the entire equation is not required.

Coefficient of x is -6, half of it  =  -3

x2 - 6x + (-3)2  =  - 3 + (-3)2

x2 - 6x + 9  =  - 3 + 9

x2 - 6x + 9  =  6

(x - 3)2  =  6

(x - 3)  =  ±6

x - 3  =  6

x  =  6+3

x - 3  =  -6

x  =  -6+3

So, the solutions are 6+3 and -6+3.

Example 4 :

Solve by completing the square method 

2x2 + 5x - 3  =  0

Solution :

2x2 + 5x - 3  =  0

2x2 + 5x  =  3/2

Divide the equation by 2.

x² + (5/2)x  =  (3/2)

Half of coefficient of x is 5/4.

By adding (5/4)2 on both sides, we get 

x² + (5/2)x + (5/4)2  =  (3/2) + (5/4)2

x² + (5/2)x + (5/4)2  =  (3/2) + (5/4)

[ x + (5/4) ]2  =  (3/2) + (25/16)

[ x + (5/4) ]2  =  49/16

[ x + (5/4) ]2  =  √(49/16)

x + (5/4) = ± 7/4

x+5/4  =  7/4

x  =  (7-5)/4

x  =  2/4

x  =  1/2

x+5/4  =  -7/4

x  =  -12/4

x  =  -3

So, the solutions area 1/2 and -3.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 21, 24 06:23 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 74)

    Nov 20, 24 08:12 AM

    digitalsatmath60.png
    Digital SAT Math Problems and Solutions (Part - 74)

    Read More