HOW TO SOLVE QUADRATIC EQUATIONS BY COMPLETING THE SQUARE

Step 1 :

In the given quadratic equation ax2 + bx + c = 0, divide the complete equation by a (coefficient of x2). 

If the coefficient of x2 is 1 (a = 1), the above process is not required. 

Step 2 :

Move the constant term to the right side of the equation.

Step 3 :

Take square of half of the coefficient of x and add it on both sides.

Examples :

6x should be written as 2(3)(x).

5x should be written as 2(x)(5/2). 

Step 4 :

Now we can compare the terms in the left side with any one of the algebraic identity

a2+2ab+b2 or  a2-2ab+b2.

So, we can write it as (a+b)2 or (a-b)2.

Step 5 :

By taking square roots on both sides, we can continue simplification and get solution.

If possible, solve for x using ‘completing the square’ :

Example 1 :

x2 + 2x  =  5

Solution :

The coefficient of x2 is 1, so we dont have to divide the entire equation.

x2 + 2x  =  5

Half of the coefficient of x(2/2) is 1.

x2 + 2x + 12  =  5 + 12

x2 + 2x + 1  =  6

(x + 1)2  =  6

Taking square roots on both sides, we get

(x + 1)  =  ±6

x + 1  =  6

x  =  6-1

x + 1  =  -6

x  =  -6-1

So, solution are 6-1 and -6-1.

Example 2 :

x2 - 2x  =  - 7

Solution :

x2 - 2x  =  - 7

Coefficient of x2 is 1. So dividing the entire equation is not required.

Coefficient of x is -2, half of it  =  -1

x2 - 2x + (-1)2  =  - 7 + (-1)2

x2 - 2x + 1  =  - 7 + 1

x2 - 2x + 1  =  - 6

(x - 1)2  =  - 6

So, the system has no real solution.

Example 3 :

x2 - 6x  =  - 3

Solution :

x2 - 6x  =  - 3

Coefficient of x2 is 1. So dividing the entire equation is not required.

Coefficient of x is -6, half of it  =  -3

x2 - 6x + (-3)2  =  - 3 + (-3)2

x2 - 6x + 9  =  - 3 + 9

x2 - 6x + 9  =  6

(x - 3)2  =  6

(x - 3)  =  ±6

x - 3  =  6

x  =  6+3

x - 3  =  -6

x  =  -6+3

So, the solutions are 6+3 and -6+3.

Example 4 :

Solve by completing the square method 

2x2 + 5x - 3  =  0

Solution :

2x2 + 5x - 3  =  0

2x2 + 5x  =  3/2

Divide the equation by 2.

x² + (5/2)x  =  (3/2)

Half of coefficient of x is 5/4.

By adding (5/4)2 on both sides, we get 

x² + (5/2)x + (5/4)2  =  (3/2) + (5/4)2

x² + (5/2)x + (5/4)2  =  (3/2) + (5/4)

[ x + (5/4) ]2  =  (3/2) + (25/16)

[ x + (5/4) ]2  =  49/16

[ x + (5/4) ]2  =  √(49/16)

x + (5/4) = ± 7/4

x+5/4  =  7/4

x  =  (7-5)/4

x  =  2/4

x  =  1/2

x+5/4  =  -7/4

x  =  -12/4

x  =  -3

So, the solutions area 1/2 and -3.

Example 5 :

The height y (in feet) of a baseball t seconds after it is hit can be modeled by the function

y = −16t2 + 96t + 3

Find the maximum height of the baseball. 

Solution :

y = −16t2 + 96t + 3

By writing the quadratic function in vertex form, we get after how long the ball will reach the maximum height.

y = −16[t2 - 6t] + 3

y = −16[t2 - 2t(3) + 32 - 32] + 3

y = −16[(t - 3)2 - 32] + 3

y = −16[(t - 3)2 - 9] + 3

y = −16(t - 8)2 + 144 + 3

y = −16(t - 8)2 + 147

So, the ball will reach its maximum height at 8 seconds and the maximum height is 147 feet.

Example 6 :

While marching, a drum major tosses a baton into the air and catches it. The height h (in feet) of the baton t seconds after it is thrown can be modeled by the function

h = −16t 2 + 32t + 6. 

a. Find the maximum height of the baton.

b. The drum major catches the baton when it is 4 feet above the ground. How long is the baton in the air?

Solution :

h = −16t2 + 32t + 6. 

h = −16[t2 - 2t] + 6

h = −16[t2 - 2t(1) + 12 - 12] + 6

= −16[(t - 1)2 - 12] + 6

= −16(t - 1)2 + 16 + 6

= −16(t - 1)2 + 22

So, the maximum height is 22 feet.

b) When the height is 4

4 = −16t2 + 32t + 6. 

−16t2 + 32t + 6 - 4 = 0

−16t2 + 32t + 2 = 0

-16[t2 - 2t] + 2 = 0

-16[t2 - 2t(1) + 12 - 12] + 2 = 0

-16[(t - 1)2 - 12] + 2 = 0

-16(t - 1)2 + 16 + 2 = 0

-16(t - 1)2 = -18

-16(t - 1)2 = -18

(t - 1)2 = 9/8

(t - 1)2 =  ±1.125

t - 1 = 1.125 and t - 1 = -1.125

t = 2.125 and t = 0.125

So, 2 second and 0.125 seconds are answers.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Given Composite Function : How to Find the Inside or Outside Function

    Jan 22, 25 02:43 AM

    How to Find the Inside or Outside Function From the Given Composite Function

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 20, 25 09:31 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 101)

    Jan 20, 25 09:27 PM

    digitalsatmath98.png
    Digital SAT Math Problems and Solutions (Part - 101)

    Read More