HOW TO TELL IF A SYSTEM IS CONSISTENT OR INCONSISTENT

  • Consistent system of equations have at least one solution. 
  • Inconsistent system of equations have no solution.

To apply the concept given below, the given equations will be in the form

a1x + b1y + c1  =  0

a2x + b2y + c2  =  0

(i)  a1/a2    b1/b2, we get a unique solution

(ii)  a1/a2  =  a1/a = c1/c2, there are infinitely many solutions.

(iii)  a1/a2  =  a1/a ≠  c1/c2, there is no solution

Discussing Nature of Solution of System of Linear Equations - Examples

On comparing the ratios a₁/a₂, b₁/b₂ and  c₁/c₂, find out whether the following pair of linear equations are consistent or inconsistent.

Example 1 :

3 x + 2 y = 5 and 2 x - 3 y = 7

Solution :

3 x + 2 y – 5 = 0

2 x - 3 y - 7 = 0

From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2

a1  =  3, b =  2, c1  =  -5

a2  =  2, b =  -3, c2  =  -7

a1/a2  =  3/2  -------(1)

b1/b2  = 2/3  -------(2)

c1/c2  =  -5/-7 = 5/7  -------(3)

This exactly matches the condition a₁/a₂ ≠  b₁/b₂.

Hence the system of equations is consistent.

Example 2 :

2 x - 3 y = 8 and 4 x - 6 y = 9

Solution :

2 x - 3 y – 8 = 0

4 x - 6 y -9 = 0

From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2

a1  =  2, b =  -3, c1  =  -8

a2  =  4, b =  -6, c2  =  -9

a1/a2  =  2/4  =  1/2  -------(1)

b1/b2  = (-3)/(-6)  =  1/2 -------(2)

c1/c2  =  -8/(-9)  =  8/9 -------(3)

This exactly matches the condition a₁/a₂ = b₁/b₂ ≠ c₁/c₂

From this we can decide that the two lines are parallel. It means these two lines will not intersect each other. So it is inconsistent.

Example 3 :

(3/2) x + (5/3) y = 7 and 9 x - 10 y = 14

Solution :

   (3/2) x + (5/3) y – 7 = 0

    9 x - 10 y – 14 = 0

From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2

a1  =  3/2, b =  5/3, c1  =  -7

a2  =  9, b =  -10, c2  =  -14

a1/a2  =  (3/2) / 9  =  1/6  -------(1)

b1/b2  = (5/3)/(-10)  =  -1/6 -------(2)

c1/c2  =  -7/(-14)  =  1/2 -------(3)

This exactly matches the condition a₁/a₂ ≠ b₁/b₂

From this, we can decide the two lines are intersecting. So it is consistent.

Example 4 :

(4/3) x + 2 y = 8 and 2 x + 3 y = 12

Solution :

  (4/3) x + 2 y – 8 = 0

   2 x + 3 y – 12 = 0

From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2

a1  =  4/3, b =  2, c1  =  -8

a2  =  2, b =  3, c2  =  -12

a1/a2  =  (4/3) / 2  =  2/3  -------(1)

b1/b2  =  2/3  -------(2)

c1/c2  =  -8/(-12)  =  2/3 -------(3)

This exactly matches the condition a₁/a₂ = b₁/b₂ = c₁/c₂

From this we may decide the two lines are coincident. So it is consistent.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 30, 24 07:08 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 30, 24 07:03 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 79)

    Nov 30, 24 06:47 AM

    digitalsatmath66.png
    Digital SAT Math Problems and Solutions (Part - 79)

    Read More