HOW TO WRITE AN EXPRESSION AS THE SQUARE OF A BINOMIAL

Expansion of (a + b)2 :

(a + b)2 = (a + b)(a + b)

Use the FOIL method to multiply the two binomials on the right side.

(a + b)2 = a ⋅ a + ab + ab + b ⋅ b

(a + b)2 = a2 + 2ab + b2

The trinomial a2 + 2ab + b2 is a perfect square trinomial. Because it can be written as the square of a binomial, that is (a + b)2.

When a trinomial is in the form a2 + 2ab + b2, it can be written as the square of a binomial.

Expansion of (a - b)2 :

(a + b)2 = (a + b)(a + b)

Use the FOIL method to multiply the two binomials on the right side.

(a - b)2 = a ⋅ a - ab - ab + b ⋅ b

(a - b)2 = a2 - 2ab + b2

The trinomial a2 - 2ab + b2 is also a perfect square trinomial. Because it can be written as the square of a binomial, that is (a + b)2.

When you have a trinomial in the form a2 - 2ab + b2, it can be written as the square of a binomial.

Write each expression in terms of square of a binomial.

Example 1 :

x2 + 6x

Solution :

In x2 + 6x, write 6x as a multiple of 2. That is, in the form of 2ab.

x2 + 6x = x2 + 2(x)(3)

x2 + 2(x)(3) is in the form of a2 + 2ab.

Comparing

x2 + 2(x)(3)

and 

a2 + 2ab + b2,

instead b2, we must have +32 in  x2 + 2(x)(3). But +3is not there. So, add 32 and subtract 3in x2 + 2(x)(3).

x2 + 6x = x2 + 2(x)(3) + 32 - 32

x2 + 2(x)(3) + 32 is in the form of a2 + 2ab + b2. So, you can write x2 + 2(x)(3) + 32 as the square of the binomial. That is (x + 3)2.

Therefore,

x2 + 6x = (x + 3)2 - 32

x2 + 6x = (x + 3)2 - 9

Example 2 :

x2 - 8x

Solution :

In x2 - 8x, write 8x as a multiple of 2. That is, in the form of 2ab.

x2 - 8x = x2 - 2(x)(4)

x2 - 2(x)(4) is in the form of a2 - 2ab.

Comparing

x2 - 2(x)(4)

and 

a2 - 2ab + b2,

instead b2, we must have +42 in  x2 - 2(x)(4). But +4is not there. So, add 42 and subtract 4in x2 - 2(x)(4).

x2 - 8x = x2 - 2(x)(4) + 42 - 42

x2 - 2(x)(4) + 42 is in the form of a2 + 2ab + b2. So, you can write x2 - 2(x)(4) + 42 as the square of the binomial. That is (x - 4)2.

Therefore,

x2 - 8x = (x - 4)2 - 42

x2 - 8x = (x - 3)2 - 16

Example 3 :

x2 + 12x

Solution :

x2 + 12x = x2 + 2(x)(6)

= x2 + 2(x)(6) + 62 - 62

= (x + 6)2 - 62

= (x + 6)- 36

Example 4 :

x2 - 3x

Solution :

x2 - 3x = x2 - 2(x)(3/2)

= x2 - 2(x)(3/2) + (3/2)2 - (3/2)2

= (x - 3/2)- (3/2)2

= (x - 3/2)- 9/4

Example 5 :

2x2 + 20x

Solution :

2x2 + 20x = 2(x2 + 10x)

= 2[x2 + 2(x)(5)]

= 2[x2 + 2(x)(5) + 5- 52]

= 2[(x + 5)- 52]

= 2[(x + 5)- 25]

= 2(x + 5)- 50

Solving Quadratic Equations by Completing the Square Method

Example 6 :

Solve :

x2 + 6x + 9 = 0

Solution :

x2 + 6x + 9 = 0

x2 + 2(x)(3) + 9 = 0

x2 + 2(x)(3) + 32 = 0

(x + 3)= 0

Take square root on both sides.

x + 3 = 0

Subtract 3 from both sides.

x = -3

Example 7 :

Solve :

x2 - 2x - 8 = 0

Solution :

x2 - 2x - 8 = 0

x2 - 2(x)(1) - 8 = 0

x2 - 2(x)(1) + 1- 12 - 8 = 0

(x2 - 2(x)(1) + 12) - 12 - 8 = 0

(x - 1)2 - 1 - 8 = 0

(x - 1)2 - 9 = 0

Add 9 to both sides.

(x - 1)2 = 9

Take square root on both sides.

x - 1 ±√9

x - 1 ±3

x - 1 = 3  or  x - 1 = -3

x = 4  or  x = -2

Example 8 :

Solve :

3x2 - 12x + 2 = 0

Solution :

3x2 - 12x + 2 = 0

3(x2 - 4x) + 2 = 0

3[x2 - 2(x)(2) + 2- 22] + 2 = 0

3[(x - 2)2 - 22] + 2 = 0

3[(x - 2)2 - 4] + 2 = 0

3(x - 2)2 - 12 + 2 = 0

3(x - 2)2 - 10 = 0

Add 10 to both sides.

3(x - 2)2 = 10

Divide both sides by 3.

(x - 2)2 = 10/3

Take square root on both sides.

x - 2 ±√(10/3)

x - 2 ±√(10/3)

x - 2 = √(10/3)  or  x - 2 = -√(10/3)

x = 2 + √(10/3)  or  x = 2 - √(10/3)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 04, 25 10:29 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 96)

    Jan 04, 25 10:26 AM

    digitalsatmath86.png
    Digital SAT Math Problems and Solutions (Part - 96)

    Read More

  3. Simplifying Complex Fractions Problems and Solutions

    Jan 04, 25 12:31 AM

    Simplifying Complex Fractions Problems and Solutions

    Read More