INDEX FORM OF SURD

The index form of a surd n√a is

a1/n

For example, 35 can be written in index form as shown below. 

35  = 51/3

What is surd ?

If ‘a’ is a positive rational number and n is a positive integer such that na is an irrational number, then nis called a ‘surd’ or a ‘radical’.

Order of a Surd

The general form of a surd is n√a is "√" is called a radical sign 'n' is called the order of the radical and 'a' is called radicand.

For example, 

3√5 is a surd of order '3'

5√10 is a surd of order '5'

In the following table, the index form, order and radicand of some surds are given.

Surd

Index form

Order

Radicand

√5

314

47

√50

51/2

141/3

71/4

501/2

2

3

4

2

5

14

7

50

Practice Questions

Question 1 :

Convert the following surd to index form.

√7 

Answer :

Surd  =  √7

Index form  =  71/2

Question 2 :

Convert the following surd to index form.

48 

Answer :

Radical form  =  48 

Index form  =  81/4

Question 3 :

Convert the following surd to index form.

36 

Answer :

Radical form  =  36 

Index form  =  61/3

Question 4 :

Convert the following surd to index form.

8

Answer :

Radical form  =  8√7 

Index form  =  71/8

Laws of Surds

Law 1 : 

n√a  =  a1/n

Law 2 : 

n√(ab)  =  n√a x n√b

Law 3 : 

n√(a/b)  =  n√a / n√b

Law 4 : 

(n√a)n  =  a

Law 5 : 

m√(n√a)  =  mna

Law 6 : 

(n√a)m  =  n√am

Laws of Indices

Law 1 : 

xm ⋅ xn  =  xm+n

Law 2 : 

xm ÷ xn  =  xm-n

Law 3 : 

(xm)n  =  xmn

Law 4 : 

(xy)m  =  xm ⋅ ym

Law 5 : 

(x / y)m  =  xm / ym

Law 6 : 

x-m  =  1 / xm

Law 7 : 

x0  =  1

Law 8 : 

x1  =  x

Law 9 : 

xm/n  =  y -----> x  =  yn/m

Law 10 : 

(x / y)-m  =  (y / x)m

Law 11 : 

ax  =  ay -----> x  =  y

Law 12 : 

xa  =  ya -----> x  =  y

Laws of Surds and Indices - Practice Problems

Problem 1 :

Simplify the following :

√5  √18

Solution :

We have two radicals with same order. So, we can take the radical once and multiply the values inside the radicals. 

√5  √18  =  √(5  18)

  =  √(5  3 ⋅ 3 ⋅ 2)

=  3 (5  2)

=  3√10

Problem 2 :

Simplify the following :

3√35 ÷ 2√7

Solution :

We have two radicals with same order. So, we can take the radical once and divide the values inside the radicals. 

3√35 ÷ 2√7  =  (3/2) ⋅ √(35/7)

  =  (3/2) ⋅ √5

  =  3√5/2

Problem 3 :

Simplify the following :

4√8 ÷ 4√12

Solution :

We have two radicals with same order. So, we can take the radical once and divide the values inside the radicals. 

4√8 ÷ 4√12  =  4√(8/12)

=  4√(2/3)

=  4√2 / 4√3

Problem 4 :

Simplify the following :

x x3

Solution :

We have the same base 'x' for both the terms. Because the terms are multiplied, we can take the base once and add the exponents. 

x x3  =  x2+3

x x3  =  x5

Problem 5 :

Simplify the following :

x7 ÷ x5

Solution :

We have the same base 'x' for both the terms. Because the terms are in division, we can take the base once and subtract the exponents. 

x7 ÷ x5  =  x7-5

x7 ÷ x5  =  x2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 30, 24 07:48 PM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 94)

    Dec 30, 24 07:47 PM

    digitalsatmath82.png
    Digital SAT Math Problems and Solutions (Part - 94)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 1)

    Dec 30, 24 12:57 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions (Part - 1)

    Read More