Integration by parts method is generally used to find the integral when the integrand is a product of two different types of functions or a single logarithmic function or a single inverse trigonometric function or a function which is not integrable directly.
Formula :
∫udv = uv - ∫vdu
By differentiating 'u' we get 'du', by integrating dv we get v.
Question 1 :
Integrate the following with respect to x:
x sin-1x /√(1-x2)
Solution :
= ∫ x sin-1x /√(1-x2) dx
t = sin-1x ===> x = sin t
dt = 1/√(1-x2) dx
= ∫ x t dt
= ∫ t sin t dt
u = t ∫dv = ∫ sin t dt
du = dt v = - cos t
∫ udv = uv - ∫vdu
= t(-cos t) - ∫ (-cos t) dt
= - t cos t + ∫ cos t dt
= - t cos t + sin t + c
= - t √(1 - sin2t) + sin t + c
= - sin-1x √(1 - x2) + x + c
Question 2 :
Integrate the following with respect to x:
x5 e^x2
Solution :
= ∫ x5 e^x2 dx
= ∫ (x2)2 x e^x2 dx
Let x2 = t
2x dx = dt
x dx = dt/2
∫ (x2)2 x e^x2 dx = ∫ t2 et (dt/2)
= (1/2) ∫ t2 et dt
u = t2 ∫dv = ∫et dt
u' = 2t v = et
u'' = 2 v1 = et
∫ udv = uv - u'v1 + u''v2 - u'''v3 + ...................
= (1/2) [t2(et) - 2t(et) + 2 (et)]
= (1/2) [et (t2 - 2t + 2)] + c
By applying the value of "t", we get
= (1/2) [e^x2 ((x2)2 - 2(x2) + 2)] + c
= (1/2)e^x2 (x4- 2x2 + 2) + c
Question 3 :
Integrate the following with respect to x:
tan-1 (8x /1 - 16x2)
Solution :
= ∫ tan-1 (8x /1 - 16x2) dx
= ∫ tan-1 (2(4x) /1 - (4x)2) dx
Let 4x = tan θ
4 dx = sec2θ dθ
= ∫ tan-1 (2 tan θ /1 - tan2θ) dx
= ∫ tan-1 (tan 2θ) dx
= ∫ 2θ (sec2θ/4) dθ
= (1/2) ∫ θ sec2θ dθ
u = θ dv = sec2θ
du = dθ v = tan θ
∫ udv = uv - ∫vdu
= θtan θ - ∫tan θ dθ
= θ tan θ - log sec θ + c
= 4x tan-1 (4x) - log √(1+(4x)2) + c
= 4x tan-1 (4x) - log √(1+16x2) + c
Question 4 :
Integrate the following with respect to x:
sin-1 (2x /1 + x2)
Solution :
= ∫sin-1 (2x /1 + x2) dx
Let x = tan θ
dx = sec2θ dθ
= ∫ sin-1 (2 tan θ /1 + (tan θ)2) dx
= ∫ sin-1 (2 tan θ /(1 + tan2θ)) dx
= ∫ sin-1 (sin 2θ) dx
= ∫ 2θ dx
= ∫ 2θ sec2θ dθ
u = θ dv = sec2θ dθ
du = 1 v = tan θ
∫ udv = uv - ∫vdu
= 2 [θtan θ - ∫tan θ dθ]
= 2 [θ tan θ - log sec θ + c]
= 2 [x tan-1 x - log √(1+tan2θ) + c
= 2 [x tan-1 x - log √(1+x2) + c
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 23, 24 10:01 AM
Nov 23, 24 09:45 AM
Nov 21, 24 06:13 AM