INTEGRATION DECOMPOSITION METHOD

Integrate the functions with respect to x :

Example 1 :

(x3 + 4x- 3x + 2)/x2

Solution :

= ∫[(x3 + 4x- 3x + 2)/x2]dx

∫(x3/x2)dx + 4∫(x2/x2)dx - 3∫(x/x2)dx + 2∫(1/x2)dx

= ∫xdx + 4∫dx - 3∫(1/x)dx + 2∫x-2dx

= x2/2 + 4x - 3logx - 2x-1

= x2/2 + 4x - 3logx - (2/x) + c

Example 2 :

(√x + (1/√x))2

Solution :

= ∫(√x + (1/√x))dx

Expanding this using the formula (a + b)2  =  a2 + 2ab + b2

= ∫[(√x)2 + (1/√x)+ 2√x(1/√x)]dx

= ∫xdx + (1/x)dx + 2dx

= (x2/2) + logx + 2x + c

Example 3 :

(2x - 5)(36 + 4x)

Solution :

= ∫(2x - 5)(36 + 4x)dx

∫(72x + 8x2 - 180 - 20x)dx

∫(8x2 + 52x - 180)dx

∫8x2dx + ∫52xdx - 180∫dx

(8/3)x3 + 26x2 - 180x + c

Example 4 :

(cot2x + tan2x)

Solution :

= ∫(cot2x + tan2x) dx

(cosec2x - 1 + sec2x - 1)dx

cosec2xdx + sec2xdx - 2dx

= -cotx + tanx - 2x + c

Example 5 :

(cos2x - cos2a)/(cosx - cosa)

Solution :

= ∫[(cos2x - cos2a)/(cosx - cosa)]dx

= ∫[(2cos2x - 1) - (2cos2a - 1)/(cosx - cosa)]dx

∫[2cos2x - 1 - 2cos2a + 1)/(cos x - cos a)]dx

∫[2(cos2x - cos2a)/(cosx - cosa)]dx 

∫[2(cosx - cosa)(cosx + cosa)/(cosx - cosa)]dx 

= 2(cosx + cosa)dx

= 2(sinx + xcosa) + c

Example 6 :

∫4 sec2 x dx

Solution :

∫4 sec2 x dx = 4∫sec2 x dx

= 4 tan x + c

Example 7 :

∫ex / (1 + ex) dx

Solution :

= ∫ex / (1 + ex) dx

Let u = 1 + ex

u - 1 = ex

du = ex dx

∫ex / (1 + ex) dx = ∫(1/u) du

= log u + C

= log (1 + ex) + C

Example 8 :

∫sin (ln x) dx

Solution :

∫sin (ln x) dx

Let u = sin (ln x) and dv = dx

du = -cos (ln x)(1/x) and v = x

 ∫u dv = uv - ∫v du

sin (ln x) x + ∫x cos (ln x)(1/x) dx

= x sin (ln x) + cos (ln x) dx -----(1)

Let u = cos (ln x) and dv = dx

du = sin (ln x)(1/x) and v = x

 ∫u dv = uv - ∫v du

= x cos (ln x) -  ∫x sin (ln x)(1/x) dx

cos (ln x) dx = x cos (ln x) -  sin (ln x) dx

Applying these values in (1), we get

∫sin (ln x) dx = x sin (ln x) + x cos (ln x) -  sin (ln x) dx

∫sin (ln x) dx + ∫sin (ln x) dx = x sin (ln x) + x cos (ln x)

2∫sin (ln x) dx = x sin (ln x) + x cos (ln x)

∫sin (ln x) dx = (1/2) [x sin (ln x) + x cos (ln x)]

Example 9 :

∫x2/(x3 + 1) dx

Solution :

∫x2/(x3 + 1) dx

Let u = x3 + 1

du = 3x2 dx

x2 dx = du/3

 ∫x2/(x3 + 1) dx = (1/u) (du/3)

= (1/3) ∫(1/u) du

= (1/3) log u + C

= (1/3) log (x3 + 1) + C

Example 10 :

∫cos x /(1 + sin x) dx

Solution :

∫cos x /(1 + sin x) dx

Let u = 1 + sin x

du = - cos x dx

cos x dx = -du

-du /u

= -log u + C

= -log (1 + sin x) + C

= log (1 + sin x)-1 + C

= log [1/(1 + sin x)] + C

Example 10 :

∫x2  ex^3 dx

Solution :

∫x2  ex^3 dx

Let u = x3 

du = 3 x2  dx

x2  dx =  du/3

∫x2  ex^3 dx = ∫ eu du/3

= (1/3) eu + C

= (1/3) ex^3  + C

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 134)

    Apr 02, 25 12:40 AM

    digitalsatmath143.png
    Digital SAT Math Problems and Solutions (Part - 134)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Apr 02, 25 12:35 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part 135)

    Apr 02, 25 12:32 AM

    digitalsatmath147.png
    Digital SAT Math Problems and Solutions (Part 135)

    Read More