Integrate the functions with respect to x :
Example 1 :
(x3 + 4x2 - 3x + 2)/x2
Solution :
= ∫[(x3 + 4x2 - 3x + 2)/x2]dx
= ∫(x3/x2)dx + 4∫(x2/x2)dx - 3∫(x/x2)dx + 2∫(1/x2)dx
= ∫xdx + 4∫dx - 3∫(1/x)dx + 2∫x-2dx
= x2/2 + 4x - 3logx - 2x-1
= x2/2 + 4x - 3logx - (2/x) + c
Example 2 :
(√x + (1/√x))2
Solution :
= ∫(√x + (1/√x))2 dx
Expanding this using the formula (a + b)2 = a2 + 2ab + b2.
= ∫[(√x)2 + (1/√x)2 + 2√x(1/√x)]dx
= ∫xdx + ∫(1/x)dx + 2∫dx
= (x2/2) + logx + 2x + c
Example 3 :
(2x - 5)(36 + 4x)
Solution :
= ∫(2x - 5)(36 + 4x)dx
= ∫(72x + 8x2 - 180 - 20x)dx
= ∫(8x2 + 52x - 180)dx
= ∫8x2dx + ∫52xdx - 180∫dx
= (8/3)x3 + 26x2 - 180x + c
Example 4 :
(cot2x + tan2x)
Solution :
= ∫(cot2x + tan2x) dx
= ∫(cosec2x - 1 + sec2x - 1)dx
= ∫cosec2xdx + ∫sec2xdx - ∫2dx
= -cotx + tanx - 2x + c
Example 5 :
(cos2x - cos2a)/(cosx - cosa)
Solution :
= ∫[(cos2x - cos2a)/(cosx - cosa)]dx
= ∫[(2cos2x - 1) - (2cos2a - 1)/(cosx - cosa)]dx
= ∫[2cos2x - 1 - 2cos2a + 1)/(cos x - cos a)]dx
= ∫[2(cos2x - cos2a)/(cosx - cosa)]dx
= ∫[2(cosx - cosa)(cosx + cosa)/(cosx - cosa)]dx
= 2∫(cosx + cosa)dx
= 2(sinx + xcosa) + c
Example 6 :
∫4 sec2 x dx
Solution :
∫4 sec2 x dx = 4∫sec2 x dx
= 4 tan x + c
Example 7 :
∫ex / (1 + ex) dx
Solution :
= ∫ex / (1 + ex) dx
Let u = 1 + ex
u - 1 = ex
du = ex dx
∫ex / (1 + ex) dx = ∫(1/u) du
= log u + C
= log (1 + ex) + C
Example 8 :
∫sin (ln x) dx
Solution :
= ∫sin (ln x) dx
Let u = sin (ln x) and dv = dx
du = -cos (ln x)(1/x) and v = x
∫u dv = uv - ∫v du
= sin (ln x) x + ∫x cos (ln x)(1/x) dx
= x sin (ln x) + ∫cos (ln x) dx -----(1)
Let u = cos (ln x) and dv = dx
du = sin (ln x)(1/x) and v = x
∫u dv = uv - ∫v du
= x cos (ln x) - ∫x sin (ln x)(1/x) dx
∫cos (ln x) dx = x cos (ln x) - ∫sin (ln x) dx
Applying these values in (1), we get
∫sin (ln x) dx = x sin (ln x) + x cos (ln x) - ∫sin (ln x) dx
∫sin (ln x) dx + ∫sin (ln x) dx = x sin (ln x) + x cos (ln x)
2