INTEGRATION OF RATIONAL FUNCTIONS WITH SQUARE ROOTS

∫ dx/(a2-x2)  =  (1/2a) log [(a + x)/(a - x)] + c

∫ dx/(x2-a2)  =  (1/2a) log [(x - a)/(x + a)] + c

∫ dx/(a2+ x2)  =  (1/a) tan-1 (x/a) + c

∫ dx/(a2- x2)  =  sin-1 (x/a) + c

∫ dx/(√x2- a2)  =  log (x + (√x2- a2)) + c

∫ dx/(√x2+ a2)  =  log (x + (√x2+ a2)) + c

∫ √(a2- x2)  =  (x/2) √(a2- x2) + (a2/2) sin-1(x/a) + c

∫ √(x2- a2)  =  (x/2) √(x2- a2) - (a2/2) log(x+√(x2- a2))+c

∫ √(x2+a2)  =  (x/2) √(x2+ a2) + (a2/2) log(x+√(x2+ a2))+c

Integrals With Square Roots in Denominator - Examples

Question 1 :

Integrate the following with respect to x:

1/[(x + 1)2 - 25]

Solution :

  =  ∫1/[(x + 1)2 - 25] dx

=  ∫1/[(x + 1)2 - 52] dx 

1/(x2 - a2) dx   =   (1/2a) log [(x-a)/(x+a)] + c

Here x = x + 1 and a = 5

=  (1/2(5)) log [(x + 1 - 5) / (x + 1 + 5)] + c

=  (1/10) log [(x - 4) / (x + 6)] + c

Question 2 :

Integrate the following with respect to x:

1/(x2 + 4x + 2)

Solution :

  =  ∫1/(x2 + 4x + 2) dx

x2 + 4x + 2  =  x2 + 2x(2) + 22 - 22 + 2

=  (x + 2)2 - 4 + 2

x2 + 4x + 2  =  (x + 2)2 - 2

=  (x + 2)2 - 22

1/√[(x + 2)2 - 22]

∫ dx/(√x2- a2)  =  log (x + (√x2- a2)) + c

Here x = x + 2 and a = 2

  =  log (x + 2 + √[(x + 2)2 - 22) + c.

  =  log (x + 2 + √(x2 + 4x + 2) + c

Question 3 :

Integrate the following with respect to x:

1/√((2+x)2 - 1)

Solution :

  =  ∫ 1/√((2+x)2 - 1) dx

∫ dx/(√x2- a2)  =  log (x + (√x2- a2)) + c

Here x = 2 + x and a = 1

  =  log (2 + x + √[(2 + x)2 - 12) + c.

  =  log (x + 2 + √( (x + 2)2 - 1 ) + c

Question 4 :

Integrate the following with respect to x:

1/(x2 - 4x + 5)

Solution :

  =  ∫ 1/(x2 - 4x + 5) dx

x2 - 4x + 5  =  x2 - 2x(2) + 22 - 22 + 5

=  (x - 2)2 - 4 + 5

x2 - 4x + 5  =  (x - 2)2 + 1

=  (x - 2)2 + 1

1/(x - 2)2 + 1

∫ dx/(√x2+ a2)  =  log (x + (√x2+ a2)) + c

Here x = x - 2 and a = 1

  =  log (x - 2 + √[(x - 2)2 - 12) + c.

  =  log (x - 2 + √(x2 - 4x + 5)) + c

Question 5 :

Integrate the following with respect to x:

1/√(9 + 8x - x2)

Solution :

  =  ∫ 1/√(9 + 8x - x2)

 dx

9 + 8x - x2  =  - (x2 - 8x - 9)

=  -(x2 - 2x(4) + 42 - 42 - 9)

=  - [(x - 4)2 - 16 - 9]

9 + 8x - x2 =  -[(x - 4)2 - 25]

=   52- (x - 4)2

1/√[ 52- (x - 4)2]

∫ dx/(√a2- x2)  =  sin-1(x/a) + c

Here x = x - 4 and a = 5

  =  sin-1 [(x - 4)/5] + c

  =  sin-1 [(x - 4)/5] + c

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More