Question 1 :
In a triangle ABC, ∠A = 60°. Prove that b + c = 2a cos (B − C)/2
Solution :
b + c = 2a cos (B − C)/2
R.H.S
= 2a cos (B − C)/2
a/sin A = b/sin B = c/sin C = 2R
a = 2R sin A, b = 2R sin B and c = 2R sin C
here ∠A = 60°
a = 2R sin (60) = 2R (√3/2) = √3R
= 2(√3 R) cos (B − C)/2 ---(1)
L.H.S
= b + c
= 2R sin B + 2R sin C.
= 2R [sin B + sin C]
= 2R [2 sin (B + C)/2 cos (B - C)/2]
= 2R [2 sin (180 - A)/2 cos (B - C)/2]
= 2R [2 cos A/2 cos (B - C)/2]
= 2R [2 cos (60/2) cos (B - C)/2]
= 2R [2 cos 30 cos (B - C)/2]
= 2R [2 (√3/2)cos (B - C)/2]
= 2R√3 cos (B - C)/2 ------(2)
(1) = (2)
Hence proved.
Question 2 :
In a triangle ABC, prove the following
(i) a sin (A/2 + B) = (b + c) sin A/2
Solution :
R.H.S
= (b + c) sin A/2
= (2R sin B + 2R sin C) sin A/2
= 2R (sin B + sin C) sin A/2
= 2R (2 sin (B+C)/2 cos (B - C)/2) sin A/2
= 2R (2 sin (180 - A)/2 cos (B - C)/2) sin A/2
= 2R (2 cos (A/2) cos (B - C)/2) sin A/2
= 2R (2 cos (A/2) sin A/2 cos (B - C)/2
= 2R (sin A cos (B - C)/2) -------(1)
Finding the value of cos (B - C)/2 :
cos (B - C)/2 = cos (B - (180 - (A+B)))/2
= cos (B-180+A+B)/2
= cos (2B-180+A)/2
= cos (B-90+A/2)
= cos (90 - (B+A/2)))
cos (B - C)/2 = sin (B+A/2)
Applying the value of cos (B - C)/2 in (1)
= 2R sin A sin (B+A/2)
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM