LCM OF ALGEBRAIC EXPRESSIONS

Least Common Multiple of Algebraic Expressions :

To find the least common multiple, first factorize the expressions if they can be factorized. Then find the product of the common factors and the rest of the factors.

If there are no common factors, then the least common multiple is the product of all the factors of the two expressions.

This product is the least common multiple of the given expressions. If the expressions are distinct and cannot be factorized, then the we should multiply everything.

Find LCM of the following algebraic expressions.

Example 1 :

2x- 18 y2, 5 x2y + 15 xy2, x+ 27y3

Solution :

2x2 - 18 y2, 5 x2y + 15 xy2, x+ 27y3

2x2 - 18 y =  2(x2- 9y2)

=  2(x2- (3y)2)

2x2 - 18 y2  =  2(x + 3y) (x - 3y) ----(1)

5x2y + 15x  =  5xy (x + 3y) ----(2)

x+ 27y3  =  x+ (3y)3

= (x + 3y) (x+ x(3y) + (3y)2)

=  (x + 3y) (x+ 3xy + 9y2)

= 2(x+3y) ⋅ ⋅  y  (x2+3xy+9y2)

=  10xy(x + 3y) (x+ 3xy + 9y2)

So, the required least common multiple is

10xy(x + 3y) (x+ 3xy + 9y2)

Example 2 :

(x + 4)2 (x - 3)3, (x - 1) (x + 4) (x - 3)2

Solution :

(x + 4)2 (x - 3)3, (x - 1) (x + 4) (x - 3)2

By comparing (x + 4) and (x + 4)2, the highest term is (x + 4)2.

By comparing (x - 3)and (x - 3)3, the highest term is (x-3)3

The extra term is (x - 1).

So, the least common multiple is 

(x - 1)(x + 4)2(x - 3)3

The least common multiple is 

(x - 1)(x + 4)2(x - 3)3

Example 3 :

10 (9x+ 6xy + y2) , 12 (3x- 5xy - 2y2), 14 (6x+ 2x3)

Solution :

10 (9x+ 6xy + y2) , 12 (3x- 5xy - 2y2), 14 (6x+ 2x3)

10 (9x2+6xy+y2) :

10  =  2 ⋅ 5

By factoring 9x+ 6xy + y2, we get

9x+ 6xy + y =  9x+ 3xy + 3xy + y2

=  3x(3x + y) + y(3x + y)

(9x+ 6xy + y2)  =  (3x + y)(3x + y)

10 (9x+ 6xy + y2)  =   ⋅ 5 (9x+ 6xy + y2) ----(1)

12(3x2-5xy-2y2) :

12  =  22 3

3x2-5xy-2y2  =  (3x2-6xy+xy-2y2)

=  3x(x-2y)+y(x-2y)

=  (3x+y) (x-2y) ----(2)

14(6x4+2x3) :

14  =  2  7

6x+ 2x=  2x3(3x + 1)

14(6x+ 2x3)  =  2⋅ 7 x3 (3x + 1) ----(3)

By comparing (1), (2) and (3), we get

=  22 ⋅  7  3  x³ ⋅ (3 x + y)²(3 x + 1)(x - 2y)

=  420 x3 (3 x + y)²(3 x + 1)(x - 2y)

So, the least common multiple is

420 x3 (3 x + y)2(3 x + 1)(x - 2y)

Example 4 :

3(a-1), 2(a - 1)2 , (a2-1)

Solution :

3(a-1), 2(a - 1)2 , (a2-1)

= 3 (a- 1) -------(1)

2 (a - 1)2  =  2(a-1)(a-1) -------(2)

(a2-1)  =  (a+1) (a-1) -------(3)

By comparing (1), (2) and (3), we get

=  3 ⋅ 2 (a - 1)2 (a + 1)

So, the least common multiple is 

6(a-1)2(a + 1)

Example 5 :

8x4 y2, 48x4 y4

Solution :

8x4 y2 =⋅ 2 ⋅ 2 ⋅ x4 y2

= 23 ⋅ x4 y2-------(1)

48x4 y4 = ⋅ 2 ⋅ 2 ⋅ 2 ⋅ x4 y2

=  24 ⋅ x4 y4-------(2)

Comparing (1) and (2), 

least common multiple =  24 ⋅ x4 y4

= 16x4y4

Example 6 :

5x - 10, 5x2- 20

Solution :

= 5x - 10

Factoring 5, we get

= 5(x - 2) --------(1)

5x2- 20

Factoring 5, we get

= 5(x - 4) --------(2)

Comparing (1) and (2), we get

least common multiple = 5(x - 2) (x - 4)

Example 7 :

x4 - 1, x2 - 2x + 1

Solution :

= x4 - 1

= (x2)2 - 1

Looks like an algebraic identity, 

= (x2 + 1) (x2 - 12)

= (x2 + 1) (x + 1)(x - 1)  ---(1)

x2 - 2x + 1 = (x - 1) (x - 1)  ---(2)

Least common multiple = (x - 1) (x - 1)(x2 + 1)

= (x4 - 1)

Example 8 :

x3 - 27, (x - 3)2 , x2 - 9

Solution :

x3 - 27

Looks like an algebraic identity, a3 - b3

a3 - b3 = (a - b)(a2 - ab + b2)

x3 - 33 = (x - 3)(x2 - x(3) + 32)

= (x - 3)(x2 - 3x + 9) -----(1)

(x - 3)2 = (x - 3)(x - 3) -----(2)

x2 - 9 =  x2 - 32

= (x + 3)(x - 3) -----(3)

Comparing (1), (2) and (3), we get

(x - 3)(x + 3) (x2 - 3x + 9)

Example 9 :

x2 - 3p + 2, p2 - 4

Solution :

x2 - 3p + 2

Using factoring, we find the linear factors

= (p - 1) (p - 2) ---(1)

p2 - 4 = p2 - 22

=(p + 2)(p - 2) ----(2)

Comparing (1) and (2), we get

least common multiple = (p + 2 )(p - 1) (p - 2)

Example 10 :

2x2 - 5x - 3, 4x2 - 36

Solution :

2x2 - 5x - 3 = 2x2 - 6x + 1x - 3

= 2x(x - 3) + 1(x - 3)

= (2x + 1)(x - 3) ---(1)

4x2 - 36 = 4(x2 - 9)

= 4(x2 - 32)

= 4(x - 3)(x + 3)---(2)

Comparing (1) and (2), we get

= 4(x - 3) (x + 3) (2x + 1)

So, the least common multiple is 

4(x - 3) (x + 3) (2x + 1)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus AB Problems with Solutions (Part - 6)

    Jan 15, 25 07:19 PM

    AP Calculus AB Problems with Solutions (Part - 6)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 100)

    Jan 14, 25 12:34 AM

    Digital SAT Math Problems and Solutions (Part - 100)

    Read More

  3. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 14, 25 12:23 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More