OPPOSITE ANGLES OF A CYCLIC QUADRILATERAL ARE SUPPLEMENTARY PROOF

Theorem :

Opposite angles of a cyclic quadrilateral are supplementary (or) The sum of opposite angles of a cyclic quadrilateral is 180°.

Given : O is the center of circle. ABCD is the cyclic quadrilateral.

To prove : ∠BAD + ∠BCD = 180°, ∠ABC + ∠ADC = 180°.

Construction : Join OB and OD.

Proof :

(i) BAD = (1/2)BOD.

(The angle subtended by an arc at the center is double the angle on the circle)

(ii) BCD = (1/2) reflex BOD.

(iii) BAD + BCD = (1/2)BOD + (1/2) reflex BOD.

Add (i) and (ii).

BAD + BCD = (1/2)(BOD + reflex BOD)

BAD + BCD = (1/2) ⋅ (360°)

(Complete angle at the center is 360°)

BAD + BCD  =  180°

(iv) Similarly ∠ABC + ∠ADC  =  180°.

Problem 1 :

In the figure given below, O is the center of a circle and ∠ADC = 120°. Find the value of x.

Solution :

ABCD is a cyclic quadrilateral. we have

ABC + ADC = 180°

Substitute ∠ADC = 120°.

∠ABC + 120° = 180°

Subtract 120° from both sides.

∠ABC = 60°

Also ACB = 90° (angle on a semi circle).

In triangle ABC we have,

BAC + ACB + ABC = 180°

Substitute ∠ACB = 90° and ∠ABC = 60°.

BAC + 90° + 60° = 180°

BAC + 150° = 180°

Subtract 150° from both sides.

∠BAC = 30°

So, the value of x is 30.

Problem 2 :

In the figure given below, ABCD is a cyclic quadrilateral in which AB || DC. If BAD = 100° find

(i) BCD

(ii) ADC

(iii) ABC

Solution :

(i) ∠BCD :

∠BAD + ∠BCD = 180°

Substitute ∠BAD = 100°.

100° + ∠BCD = 180°

Subtract 100° from both sides.

∠BCD = 80°

(ii) ∠ADC :

Because AB || DC and AD is transversal,

∠BAD + ∠ADC = 180°

Substitute ∠BAD = 100°.

100° + ∠ADC = 180°

Subtract 100° from each side.

∠ADC = 80°

(iii) ∠ABC :

∠ADC + ∠ABC = 180°

Substitute ∠ADC = 80°.

80° + ∠ABC = 180°

Subtract 80° from both sides.

∠ABC = 100°

Problem 3 :

In the figure given below, ABCD is a cyclic quadrilateral in which BCD = 100° and ABD = 50° find ADB. 

Solution :

DAB + DCB = 180°

Substitute ∠DCB = 100°.

DAB + 100° = 180°

Subtract 100° from both sides.

DAB = 80°

In triangle ADB,

DAB + ABD + ∠ADB = 180°

Substitute ∠DAB = 80° and ∠ABD = 50°.

80° + 50° ∠ADB = 180°

130° + ADB = 180°

Subtract 130° from both sides.

ADB = 180°

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 07, 25 03:55 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 97)

    Jan 07, 25 03:53 AM

    digitalsatmath88.png
    Digital SAT Math Problems and Solutions (Part - 97)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 5)

    Jan 06, 25 05:53 AM

    AP Calculus AB Problems with Solutions (Part - 5)

    Read More