Questions 1-4 : Choose the letter with the name of the segment/line/ray shown.
Question 1 :
(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
Question 2 :
(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
Question 3 :
(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
Question 4 :
(a) perpendicular bisector
(b) angle bisector
(c) median
(d) altitude
Questions 5-11 : Choose the letter with the name of the correct point of concurrency.
Question 5 :
The point of intersection of the three altitudes of a triangle :
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter
Question 6 :
The point of intersection of the three medians of a triangle :
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter
Question 7 :
The point of intersection of the three perpendicular bisectors of a triangle :
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter
Question 8 :
The point of intersection of the three angle bisectors of a triangle :
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter
Question 9
It is equidistant from the three vertices of a triangle :
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter
Question 10 :
It is equidistant from the three sides of a triangle :
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter
Question 11 :
It divides each median into two sections at a 2 : 1 ratio :
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter
Questions 12-18 : Name the point of concurrency shown.
Question 12 :
Question 13 :
Question 14 :
Question 15 :
Question 16 :
Question 17 :
Question 18 :
Question 19 :
Which of the following can be used to inscribe a circle about a triangle.
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter
Question 20 :
Which of the following can be used to circumscribe a circle about a triangle. 3
(a) circumcenter
(b) incenter
(c) centroid
(d) orthocenter
1. (d) altitude
2. (c) median
3. (a) perpendicular bisector
4. (b) angle bisector
5. (d) orthocenter
6. (c) centroid
7. (a) circumcenter
8. (b) incenter
9. (a) circumcenter
10. (b) incenter
11. (c) centroid
12. centroid
13. incenter
14. circumcenter
15. orthocenter
16. circumcenter
17. incenter
18. circumcenter
19. incenter
20. circumcenter
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 30, 24 07:48 PM
Dec 30, 24 07:47 PM
Dec 30, 24 12:57 AM