POLYGON INSCRIBED IN A CIRCLE

If all of the vertices of a polygon lie on a circle, the polygon is inscribed in the circle and the circle is circumscribed about the polygon.  The polygon is an inscribed polygon and the circle is a circumscribed circle.  

Theorems About Inscribed Polygons

Theorem 1 :

If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle.  Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle.

It is illustrated in the diagram shown below. 

In the diagram shown above,B  is a  right angle if and only if AC is  a diameter of the circle.

Theorem 2 :

A quadrilateral can be inscribed in a  circle if and only if its opposite angles are supplementary.

It is illustrated in the diagram shown below. 

In the diagram shown above, D, E, F, and G lie on some circle with center at C, if and only if

mD + mF  =  180°  and  mE + mG  =  180°

Using Theorems 1 and 2

Example 1 :

Find the value of x in the diagram shown below. 

Solution :

AB is diameter.  So, C  is a right angle and  mC = 90°.

2x°  =  90°

2x  =  90

Divide each side by 2. 

2x/2  =  90/2

x  =  45

Example 2 :

Find the value of y and z in the diagram shown below. 

Solution :

DEFG is inscribed in a circle, so opposite angles are supplementary.

m∠E + m∠G  =  180°

120 + y  =  180

z  =  60

m∠D + m∠F  =  180°

z + 80  =  180

z  =  100

Using an Inscribed Quadrilateral

Example 3 :

In the diagram, polygon ABCD is inscribed in the circle with center P.  Find the measure of each angle.

Solution :

ABCD is inscribed in a circle, so opposite angles are supplementary.

So, we have 

3x + 3y  =  180 -----(1) 

5x + 2y  = 180 -----(2)

To solve the above system of linear equations, we can solve the first equation for y.

(1)-----> 3x + 3y  =  180

3(x + y)  =  180

Divide each side by 3. 

3(x + y) / 3  =  180 / 3

x + y  =  60

Subtract x from each side. 

y  =  60 - x -----(3)

Plug y  =  60 - x in the second equation. 

(2)-----> 5x + 2(60 - x)  =  180

5x + 120 - 2x  =  180

Simplify.  

3x + 120  =  180

Subtract 120 from each side. 

3x  =  60

Divide each side by 3. 

3x / 3  =  60 / 3

x  =  20

Plug x  =  20 in the third equation. 

(3)-----> y  =  60 - 20

y  =  40

We get x  =  20 and y  =  40. 

So, we have 

m∠A  =  2y°  =  2(40°)  =  80°

m∠B  =  3x°  =  3(20°)  =  60°

m∠C  =  5x°  =  5(20°)  =  100°

m∠D  =  3y°  =  3(40°)  =  120°

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 72)

    Nov 23, 24 09:36 PM

    digitalsatmath57.png
    Digital SAT Math Problems and Solutions (Part - 72)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More