PRACTICE PROBLEMS ON FINDING CENTRIOD OF A TRIANGLE WITH COORDINATES

Definition of centroid :

Consider a triangle ABC whose vertices are A(x1, y1), B(x2 , y2 ) and C(x3 , y3). Let AD, BE and CF be the medians of the triangle ABC.

The centroid G of the triangle with vertices A(x1, y1), B(x2 , y2 ) and C(x3 , y3) is

  =  [ (x1 + x2 + x3)/3, (y1 + y2 + y3)/3 ]

In the above triangle , AD, BE and CF are called medians. All the three medians AD, BE and CF are intersecting at G. So  G is called centroid of the triangle 

Question 1 :

Find the centroid of triangle whose vertices are (1, 10) (-7, 2) and (-3, 7).

Solution :

Let the vertices be A (1, 10) B (-7, 2) and  C (-3, 7)

x1  =  1, x2  =  -7, x3  =  -3

y1  =  10, y2  =  2, y3  =  7 

Centroid of a triangle  =  (x+ x+ x3)/3, (y+ y+ y3)/3

  =  [ 1+(-7)+(-3)/3 , (10+2+7) ]/ 3

  =  (1-7-3)/3, 19/3

  =  (-9/3 , 19/3)

  =  (-3, 19/3)

Question 2 :

Find the centroid of triangle whose vertices are (-1, -3) (2, 1) and (2, -4).

Solution :

Let the vertices be A (-1, -3) B (2, 1) and C (2, -4).

x1  =  -1, x2  =  2, x3  =  2

y1  =  -3, y2 = 1, y3  =  -4 

Centroid of a triangle  =  (x+ x+ x3)/3, (y+ y+ y3)/3

  =  [ ((-1)+2+2)/3, ((-3)+1+(-4))/3]

  =  [ (-1 + 4)/3, (-3+1-4)/3 ] 

  =  [3/3, (-7 + 1)/3   

  =  [ 1, (-6/3) ]

  =  (1, -2)

Question 3 :

Find the centroid of triangle whose vertices are (1, 1) (2, 3) and (-2, 2).

Solution :

Let the vertices be A (1, 1) B (2, 3) and  C (-2, 2)

x1  =  1, x2  =  2, x3  =  -2

y1  =  1, y2  =  3, y3  =  2 

Centroid of a triangle  =  (x+ x+ x3)/3, (y+ y+ y3)/3

  =  [(1+2+(-2))/3, (1+3+2)/3]

  =  [ (3 - 2)/3 , (6/3) ]

  =  (1/3 , 2)

Question 4 :

Find the centroid of triangle whose vertices are (1, 3) (2, 7) and (5, 4).

Solution :

Let the vertices be A (1, 3) B (2, 7) and  C (5, 4)

x1  =  1, x2  =  2, x3  =  5

y1  =  3, y2  =  7, y3  =  4 

Centroid of a triangle  =  (x+ x+ x3)/3, (y+ y+ y3)/3

  =  [ (1+2+5)/3, (3+7+4)/3 ]

  =  [ (3+5)/3, (10+4)/3 ]

  =  (8/3, 14/3)

Question 5 :

Find the centroid of triangle whose vertices are (6, 7) (2, -9) and (-4, 1).

Solution :

Let the vertices be A (6, 7) B (2, -9) and  C (-4, 1)

x1  =  6, x2 = 2, x3  =  -4

y1  =  7, y2  =  -9, y3  =  1 

Centroid of a triangle   =  (x+ x+ x3)/3, (y+ y+ y3)/3

  =  [ (6+2+(-4))/3 , (7+(-9)+1)/3

  =  (8 - 4)/3 , (8 - 9)/3 

  =  (4/3 , -1/3)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 14, 24 03:48 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 87)

    Dec 14, 24 03:44 AM

    digitalsatmath74.png
    Digital SAT Math Problems and Solutions (Part - 87)

    Read More

  3. Calculus Related Rates Problems and Solutions

    Dec 13, 24 07:39 AM

    Calculus Related Rates Problems and Solutions

    Read More