Find the cube roots of a complex number
1) 2(cos 2π + i sin 2π)
2) 2(cos π/4 + i sin π/4)
3) 3(cos 4π/3 + i sin 4π/3)
4) 27(cos 11π/6 + i sin 11π/6)
5) -2 + 2i
Answers :
1) z0 = 3√2(cis (2π/3)) z1 = 3√2(cis (8π/3)) z2 = 3√2(cis (10π/3)) |
2) z0 = 3√2(cis (π/12)) z1 = 3√2(cis (9π/12)) z2 = 3√2(cis (17π/12)) |
3) z0 = 3√3(cis (4π/9)) z1 = 3√3(cis (10π/9)) z2 = 3√2[cis (16π/9)) |
4) z0 = 3(cis (11π/18)) z1 = 3(cis (23π/18)) z2 = 3(cos (35π/18)) |
5) z0 = 6√8(cis (3π/12)) z1 = 6√8(cos (11π/12)) z2 = 6√8(cos (19π/12)) |
Find the nth roots of a complex number
1) 1 + i, n = 4
2) 1 - i, n = 6
3) 2 + 2i, n = 3
4) -2 + 2i, n = 4
Answers :
1) z0 = 8√2(cis (π/16)) z1 = 8√2(cis (9π/16)) z2 = 8√2(cis (17π/16)) z3 = 8√2(cis (25π/16)) |
2) z0 = 12√2(cis (π/24)) z1 = 8√2(cis (7π/24)) z2 = 12√2(cis (5π/8)) z3 = 12√2(cis (23π/24)) z4 = 12√2(cis (31π/24)) z5 = 12√2(cis (39π/24)) |
3) z0 = 6√8(cis (π/12)) z1 = 6√8(cis (3π/4)) z2 = 6√8(cis (17π/12)) |
4) z0 = 8√8(cis (3π/16)) z1 = 8√8(cis (11π/16)) z2 = 8√8(cis (19π/16)) z3 = 8√8(cis (27π/16)) |
Find the indicated power of a complex number
1) (cos π/4 + i sin π/4)3
2) [3(cos 3π/2 + i sin 3π/2)]5
3) [2(cos 3π/4 + i sin 3π/4)]3
4) (1 + i)5
5) (1 - √3i)3
Answers :
1) z3 = -√2/2 + i √2/2 2) z5 = 243i 3) z3 = 4√2 + i 4√2 |
4) z5 = -4 - 4i 5) z3 = -8 |
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 27, 24 10:53 PM
Dec 27, 24 10:48 PM
Dec 26, 24 07:41 AM