(a+b)3 = a3+3a2b+3ab2+b3
Problem 1 :
Expand (3x + 2y)3
(A) 27x³ + 9 x² y + 4 x y² + 8 y³
(B) 27x³ + 54 x² y + 16 xy² + 8 y³
(C) 9x2 + 24 xy + 9y²
Problem 2 :
Expand (2a + b)³
(A) 8a³ + 12 a² b + 6a b² + b ³
(B) 27a³ + 27 a² b + 16 ab² + b³
(C) 25a² + 24 a²b + 12 ab² + 9b²
Problem 3 :
Expand (S + T) ³
(A) S³ - 3 S² T + 3 ST ² + T ³
(B) S³ - 3 S² T - 3 S T ² + T ³
(C) S³ + 3 S² T + 3 S T ² + T ³
Problem 4 :
Expand (3V + Q) ³
(A) 27 V ³ + 2 V ² Q + 3 V Q² + Q³
(B) 27V³ - 2 V ² Q - 3 V Q² + Q³
(C) 27 V³ - 2 V²Q - 3V Q² + Q³
Problem 5 :
Expand (4T + 3Q) ³
(A) 64T³ - 96 T² Q - 108 T Q² + Q³
(B) 64T³ - 96 T² Q + 108 T Q² - Q³
(C) 64T³ + 96 T²Q + 108 T Q² + 27Q³
Problem 6 :
Expand (p + 5q)3
(A) p³ - 15 p² q + 75 p q² - 125 q³
(B) p³ - 15 p² q + 75 p q² + 125 q³
(C) p³ + 15 p² q + 75 p q² + 125 q³
Expand :
Problem 7 :
(3a - 4b)3
Problem 8 :
(x + (1/y))3
Evaluate the following by using identities:
Problem 9 :
983
Problem 10 :
10013
Problem 11 :
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
Problem 12 :
Find 27a3 + 64b3 , if 3a + 4b = 10 and ab = 2
Problem 1 :
Expand (3x + 2y)3
Solution :
Here a = 3x and b = 2y
(3x + 2y)3 = (3x)3 + 3(3x)2(2y) + 3(3x)(2y)2 + (2y)3
= 33x3 + 3 (9x 2) (2y) + 3 (3x) (4y2) + 8y3
= 27 x3 + 54 x 2y + 36 y2 + 8y3
Problem 2 :
Expand (2a + b)³
Solution :
Here a = 2a and b = b
(2a + b)3 = (2a)3 + 3 (2a) 2 (b) + 3 (2a) (b)2 + (b)3
= 23(a3) + 3 (4a) (b) + 3 (2a) (b)2 + (b)3
= 8a3 + 12 a b + 6 a b2 + b3
Problem 3 :
Expand (S + T)3
Solution :
Here a = S and b = T
(S + T)3 = S3 + 3 S2 T + 3 ST2 + T3
Problem 4 :
Expand (3V + Q)³
Solution :
Here a = 3V and b = Q
(3V + Q)3 = (3V)3 + 3 (3V) 2 (Q) + 3 (3V) (Q)2 + (Q)3
= 33V3 + 3(9V2)(Q) + 3 (3V) (Q)2 + (Q)3
= 27V3 + 27 V 2Q + 9 VQ2 + Q3
Problem 5 :
Expand (4T + 3Q) ³
Solution :
here a = 4T and b = 3Q
(4T + 3Q)3 = (4T)3 + 3(4T)2 (3Q) + 3(4T)(3Q)2 + (3Q)3
= 43T3 + 3 (16 T 2) (3Q) + 3 (4T) (9Q2) + 33Q3
= 64 T3 + 144 T 2 Q + 108 2 + 27 Q3
Problem 6 :
Expand (p + 5q)3
Solution :
here a = p and b = 5q
(p + 5q)3 = p3 + 3p2 (5q) + 3p(5q)2 + (5q)3
= p3 + 3 p2 (5q) + 3 p (25q2) + (53q3)
= p3 + 15 p 2 q + 75 p q2) + 125q3
Expand :
Problem 7 :
(3a - 4b)3
Solution :
a = 3a and b = 4b
(a - b)3 = a3 - 3a2 b + 3ab2 - b3
= (3a)3 - 3(3a)2 (4b) + 3(3a)(4b)2 - (4b)3
= 27a3 - 3(9a2) (4b) + 3(3a)(16b2) - (64b3)
= 27a3 - 108a2b + 144ab2 - 64b3
Problem 8 :
(x + (1/y))3
Solution :
a = x and b = 1/y
(a + b)3 = a3 + 3a2 b + 3ab2 + b3
= x3 - 3x2 (1/y) + 3x(1/y)2 - (1/y)3
= x3 - (3x2/y) + (3x/y2) - (1/y3)
Evaluate the following by using identities:
Problem 9 :
983
Solution :
(a - b)3 = a3 - 3a2 b + 3ab2 - b3
98 = 100 - 2
= (100)3 - 3(100)2 (2) + 3(100)(2)2 - 23
= 1000000 - 3(10000) (2) + 3(100)(4) - 8
= 1000000 - 60000 + 1200 - 8
= 1001200 - 60008
= 941192
Problem 10 :
10013
Solution :
(a + b)3 = a3 + 3a2 b + 3ab2 + b3
1001 = 1000 + 1
= (1000)3 + 3(1000)2 (1) + 3(1000)(1)2 + 13
= 1000000000 + 3(1000000) + 3(1000) + 1
= 1003003001
Problem 11 :
If (x + y + z) = 9 and (xy + yz + zx) = 26, then find the value of x2 + y2 + z2
Solution :
x2 + y2 + z2 = (x + y + z)2 - 2(xy + yz + zx)
Applying the given values, we get
x2 + y2 + z2 = 92 - 2(26)
= 81 - 52
= 29
Problem 12 :
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
Solution :
a3 + b3 = (a + b)3 - 3ab(a + b)
(3a)3 + (4b)3 = (3a + 4b)3 - 3(3a)(4b)(3a+ 4b)
= (3a + 4b)3 - 36ab(3a+ 4b)
= 103 - 36(2)(10)
= 1000 - 720
= 280
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 14, 25 12:34 AM
Jan 14, 25 12:23 AM
Jan 12, 25 11:03 PM