Problem 1 :
If 2x + 2/x = 3, what is the value of x2 + 1/x2 ?
Solution :
2x + 2/x = 3
Square both sides.
(2x + 2/x)2 = 32
(2x + 2/x)(2x + 2/x) = 9
(2x)2 + (2x)(2/x) + (2/x)(2x) + (2/x)2 = 9
4x2 + 4 + 4 + 4/x2 = 9
4x2 + 8 + 4/x2 = 9
Subtract 8 from both sides.
4x2 + 4/x2 = 1
Factor.
4(x2 + 1/x2) = 1
Divide both sides by 4.
x2 + 1/x2 = 1/4
Problem 2 :
If a + b + c = 6 and a2 + b2 + c2 = 14, what is the value of
(a - b)2 + (b - c)2 + (c - a)2 ?
Solution :
Consider the following algebraic identity.
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
Substitute a + b + c = 6 and a2 + b2 + c2 = 14.
(6)2 = 14 + 2(ab + bc + ca)
36 = 14 + 2(ab + bc + ca)
Subtract 14 from both sides.
12 = 2(ab + bc + ca)
Divide both sides by 2.
6 = ab + bc + ca
The value of (a - b)2 + (b - c)2 + (c - a)2 :
= (a - b)2 + (b - c)2 + (c - a)2
= a2 - 2ab + b2 + b2- 2bc + c2 + c2 - 2ca + a2
= a2 + a2 + b2 + b2 + c2 + c2 - 2ab - 2bc - 2ca
= 2a2 + 2b2 + 2c2- 2ab - 2bc - 2ca
= 2(a2 + b2 + c2) - 2(ab + bc + ca)
Substitute a2 + b2 + c2 = 14 and ab + bc + ca = 6.
= 2(14) - 2(6)
= 28 - 12
= 16
Problem 3 :
If x - y = 8 and xy = 5, what is the value of
x3 - y3 + 8(x + y)2
Solution :
Consider the square of a binomial given below.
(x - y)2 = x2 + y2 - 2xy
Substitute x - y = 8 and xy = 5.
82 = x2 + y2 - 2(5)
64 + 10 = x2 + y2
74 = x2 + y2
Consider the square of a binomial given below.
(x + y)2 = x2 + y2 + 2xy
Substitute x2 + y2 = 74 and xy = 5.
(x + y)2 = 74 + 2(5)
(x + y)2 = 74 + 10
(x + y)2 = 84
The value of x3 - y3 + 8(x + y)2 :
= x3 - y3 + 8(x + y)2
Use the identity a3 - b3 = (a - b)(a2 + ab + b2).
= (x - y)(x2 + xy + y2) + 8(x + y)2
Substitute.
= (8)(74 + 5) + 8(84)
= 8(79) + 672
= 632 + 672
= 1304
Problem 4 :
If x + y = 5 and xy = 6 and x > y, then find 2(x2 + y2).
Solution :
(x + y)2 = (x + y)(x + y)
(x + y)2 = x2 + xy + xy + y2
(x + y)2 = x2 + 2xy + y2
or
x2 + 2xy + y2 = (x + y)2
Subtract 2xy from both sides.
x2 + y2 = (x + y)2 - 2xy
Substitute x + y = 5 and xy = 6.
x2 + y2 = 52 - 2(6)
x2 + y2 = 25 - 12
x2 + y2 = 13
Multiply both sides by 2.
2(x2 + y2) = 2(13)
2(x2 + y2) = 26
Problem 5 :
If a3 - b3 = 513 and a - b = 3, what is the value of ab?
Solution :
a3 - b3 = 513
(a - b)3 + 3ab(a - b) = 513
Substitute a - b = 3.
33 + 3ab(3) = 513
27 + 9ab = 513
Subtract 27 from both sides.
9ab = 486
Divide both sides by 9.
ab = 54
Problem 6 :
If a2 + b2 + c2 = 9 and ab + bc + ca = 8, find the value of
(a + b + c)2
Solution :
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
(a + b + c )2 = a2 + b2 + c2 + 2(ab + bc + ca)
Substitute a2 + b2 + c2 = 9 and ab + bc + ca = 8.
(a + b + c)2 = 9 + 2(8)
= 9 + 16
= 25
Problem 7 :
If a + b = √7 and a - b = √5, then find the value of
8ab(a2 + b2)
Solution :
a + b = √7 ----(1)
a - b = √5 ----(2)
(1) + (2) :
2a = √7 + √5
a = (√7 + √5)/2
Substitute a = (√7 + √5)/2 in (1).
(√7 + √5)/2 + b = √7
b = √7 - [(√7 + √5)/2]
b = (√7 - √5)/2
ab = [(√7 + √5)/2] ⋅ [(√7 - √5)/2]
ab = (7 - 5)/4
ab = 1/2
a2 + b2 = (a + b)2 - 2ab
a2 + b2 = (√7)2 - 2(1/2)
a2 + b2 = 7 - 1
a2 + b2 = 6
The value of 8ab(a2 + b2) :
8ab(a2 + b2) = 8(1/2)(6)
8ab(a2 + b2) = 24
Problem 8 :
If a - b = 4 and ab = 60, what is the value of a + b?
Solution :
(a - b)2 = (a + b)2 - 4ab
Substitute a - b = 4 and ab = 60.
42 = (a + b)2 - 4(60)
16 = (a + b)2 - 240
Add 240 to both sides.
256 = (a + b)2
or
(a + b)2 = 256
Take square root on both sides.
a + b = √256
a + b = ±16
Problem 9 :
If a + b = 9m and ab = 18m2, what is the value of a - b?
Solution :
(a + b)2 = (a - b)2 + 4ab
Substitute a + b = 9m and ab = 18m2.
(9m)2 = (a - b)2 + 4(18m2)
81m2 = (a - b)2 + 72m2
Subtract 72m2 from both sides.
9m2 = (a - b)2
or
(a - b)2 = 9m2
Take square root on both sides.
a - b = √(9m2)
a - b = ±9m
Problem 10 :
Simplify :
(2345 x 2345 - 759 x 759)/(2345 - 759)
Solution :
= (2345 x 2345 - 759 x 759)/(2345 - 759)
= (23452 - 7592)/(2345 - 759)
Use the identity a2 - b2 = (a + b)(a - b).
= (2345 + 759)(2345 - 759)/(2345 - 759)
= (3104)(1586)/(1586)
= 3104
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 26, 25 06:56 AM
Jan 25, 25 01:00 AM
Jan 25, 25 12:52 AM