Question 1 :
(i) If n(A) = 25, n(B) = 40, n(A∪B) = 50 and n(B′) = 25 , find n(A∩B) and n(U).
Solution :
n(AUB) = n(A) + n (B) - n(AnB)
50 = 25 + 40 - n(AnB)
n(A n B) = 65 - 50
n(A n B) = 15
n (U) = n(B) + n(B')
n (U) = 40 + 25
= 65
(ii) If n(A) = 300, n(A∪B) = 500, n(A∩B) = 50 and n(B′) = 350, find n(B) and n(U).
Solution :
n(AUB) = n(A) + n (B) - n(AnB)
500 = 300 + n(B) - 50
500 = 250 + n(B)
n(B) = 500 - 250
n(B) = 250
n(U) = n(B) + n(B')
= 250 + 350
n(U) = 600
Question 2 :
If U = {x : x ∈ N, x ≤ 10}, A = {2, 3, 4, 8, 10} and B = {1, 2, 5, 8, 10}, then verify that n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
Solution :
U = {x : x ∈ N, x ≤ 10}
U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
A = {2, 3, 4, 8, 10} and B = {1, 2, 5, 8, 10},
A U B = {1, 2, 3, 4, 5, 8, 10}
A n B = {2, 8, 10}
n(AUB) = 7
n(A n B) = 3
n(A) = 5
n(B) = 5
n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
7 = 5 + 5 - 3
7 = 10 - 3
7 = 7
Hence verified.
Question 3 :
Verify n(A U B U C) = n(A) + n(B) + n(C) − n(A n B) − n(B n C) − n(A n C) + n(A n B n C) for the following sets.
(i) A = {a, c, e, f, h}, B = {c, d, e, f } and C = {a, b, c, f }
Solution :
n(A) = 5, n (B) = 4, n (C) = 4
A n B = {c, e , f} ==> n(A n B) = 3
B n C = {c, f} ==> n(B n C) = 2
A n C = {a, c, f} ==> n(An C) = 3
A n B n C = {c, f} ==> n(A n B n C) = 2
A U B U C = {a, b, c, d, e, f, h} ==> n(A U B U C) = 7
n(A U B U C) = n(A) + n(B) + n(C) − n(A n B) − n(B n C) − n(A n C) + n(A n B n C)
7 = 5 + 4 + 4 - 3 - 2 - 3 + 2
7 = 13 - 6
7 = 7
Hence proved.
(ii) A = {1, 3, 5}, B = {2, 3, 5, 6} and C = {1, 5, 6, 7}
Solution :
n(A) = 3, n (B) = 4, n (C) = 4
A n B = {3, 5} ==> n(A n B) = 2
B n C = {5, 6} ==> n(B n C) = 2
A n C = {1, 5} ==> n(An C) = 2
A n B n C = {5} ==> n(A n B n C) = 1
A U B U C = {1, 2, 3, 5, 6, 7} ==> n(A U B U C) = 6
n(A U B U C) = n(A) + n(B) + n(C) − n(A n B) − n(B n C) − n(A n C) + n(A n B n C)
6 = 3 + 4 + 4 - 2 - 2 - 2 + 1
6 = 11 - 6 + 1
6 = 6
Hence proved.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 05, 24 11:16 AM
Nov 05, 24 11:15 AM
Nov 02, 24 11:58 PM