PRACTICE QUESTIONS ON CIRCLES AND CYCLIC QUADRILATERALS

Question 1 :

In the given figure, AB and CD are the parallel chords of a circle with centre O. Such that AB = 8cm and CD = 6cm. If OM ⊥ AB and OL ⊥ CD distance between LM is 7cm. Find the radius of the circle.

Solution :

Let us join the points OC, OD, OA and OB.

OA  =  OB  =  OC  and OD are equal in length and it is radius.

Let OL  =  x

In triangle OLD, 

CL  =  CD  =  3 cm

OL2 + LD2  =  OD2

x2 + 32  =  OD2

OD2  =  x2 + 9  ------------(1)

In triangle OAB, 

OM  =  7 - x

AM  =  BM  =  4 cm

OM2 + MB2  =  OB2

(7 - x)2 + 42  =  OB2

OB2  =  (7-x)2 + 16  ------------(2)

(1)  =  (2)

 (7-x)2 + 16  =  x2 + 9 

49 - 14x + x2 + 16 - x2 - 9  =  0

-14x + 56  =  0

x  =  56/14  =  4

By applying the value of x in (1), we get

OD2  =  42 + 9  

OD2  =  16 + 9  =  25

OD  =  5 cm

Question 2 :

The arch of a bridge has dimensions as shown, where the arch measure 2 m at its highest point and its width is 6 m. What is the radius of the circle that contains the arch?

Solution :

DB  =  2 m and DB  =  3 m

CE  =  CB  =  AC  (radius)

Let DC  =  x

In triangle CDB, 

CB2  =  CD2 + DB2

CB2  =  x2 + 3 ---(1)

CE  =  x + 2

By applying the value of CE  =  x + 2 (CB) in (1), we get

(x + 2)2  =  x2 + 9

x2 + 4x + 4 - x2 - 9  =  0

4x - 5  =  0

x  =  5/4

x  =  1.25

CE  =  1.25 + 2  =  3.25 m

Question 3 :

In figure, <ABC =120 , where A,B and C are points on the circle with centre O. Find <OAC ?

Solution :

Question 4 :

A school wants to conduct tree plantation programme. For this a teacher allotted a circle of radius 6m ground to nineth standard students for planting sapplings. Four students plant trees at the points A,B,C and D as shown in figure. Here AB = 8m, CD = 10m and AB is perpendicular to CD. If another student places a flower pot at the point P, the intersection of AB and CD, then find the distance from the centre to P.

Solution :

AM  =  (1/2) AB  

AM  =  (1/2)8  =  4

CN  =  (1/2) 10  =  5

OA  =  6

OA2  =  OM2 + MO2

62  =  OM2 + 42

36 - 16  =  OM2

OM  =  20  =  2√5

OD2  =  ON2 + ND2

62  =  ON2 + 52

36 - 25  =  ON2

ON  =  √11

OMPN is a rectangle and OP is a diagonal.

OP2  =  ON2 + PN2

OP2  =  √112 + (20)2

OP2  =  11 + 20

OP  =  √31  =  5.56 (approximately)

Question 5 :

In the given figure, POQ = 100° and PQR = 30°, then find RPO .

Solution :

By Inscribed Angle Theorem, 

∠PRQ  =  1/2 ⋅ marc PQ

∠PRQ  =  1/2 ⋅ 100°

∠PRQ  =  50°

In ΔOPQ,

OP  =  OQ  =  Radius

So, ΔOPQ is an isosceles triangle. 

Because ∠POQ  =  100°, 

OPQ  =  ∠OQP  =  45°

In ΔPQR, 

∠RPQ + ∠PQR + ∠PRQ  =  180°

Substitute.

∠RPQ + 30° + 50°  =  180°

∠RPQ + 80°  =  180°

Subtract 80° from each side. 

∠RPQ  =  100°

∠RPO  =  ∠RPQ - ∠OPQ

∠RPO  =  100° - 45°

∠RPO  =  55°

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Dec 23, 24 03:47 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 91)

    Dec 23, 24 03:40 AM

    Digital SAT Math Problems and Solutions (Part - 91)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 90)

    Dec 21, 24 02:19 AM

    Digital SAT Math Problems and Solutions (Part - 90)

    Read More