PROBLEMS INVOLVING CONDITIONAL IDENTITIES IN TRIGONOMETRY

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Problem 1 :

If A + B + C = 2s, then prove that

sin(s − A) sin(s − B) + sins sin(s − C)  =  sinA sinB

Solution :

Given : A + B + C  =  2s.

sin(s − A) sin(s − B) :

=  (2/2)sin(s − A) sin(s − B)

=  (1/2)[cos(s - A - s + B) - cos(s - A + s - B)]

=  (1/2)[cos(B - A) - cos(2s - A - B)]

=  (1/2)[cos(B - A) - cos(A + B + C - A - B)]

=  (1/2)[cos(B - A) - cosC]  

sins sin(s − C) :

=  (2/2)sins sin(s − C)

=  (1/2)[2 sins sin(s - C)]

=  (1/2)[cosC - cos(2s - C)]  

sin(s − A) sin(s − B) + sins sin(s − C) :

=  (1/2)[cos(B - A) - cosC] + (1/2)[cosC - cos(2s - C)] 

=  (1/2)[cos(B - A) - cosC + cosC - cos(2s - C)] 

=  (1/2)[cos(B - A) - cos(A + B + C - C)] 

=  (1/2)[cos(B - A) - cos(A + B)] 

=  (1/2)[-2sinB sin(-A)]

=  sinA sin B

Hence proved

Problem 2 :

If x + y + z = xyz, then prove that

(2x/1 − x2) + (2y/1 − y2) + (2z/1 − z2)

=  (2x/1 − x2) (2y/1 − y2) (2z/1 − z2)

Solution :

x + y + z  =  xyz

Let x = tanA, y = tanB and z = tanC.

Then, 

x + y + z  =  xyz

tanA + tanB + tanC  =  tanA tanB tanC

tanA + tanB  =  tanA tanB tanC - tanC

tanA + tanB  =  tanC(tanAtanB - 1)

tanA + tanB  =  -tanC(1 - tanAtanB)

(tanA + tanB) / (1 - tanAtanB)  =  - tanC

tan(A + B)  =  tan(-C)

A + B  =  -C

Multiply each side by 2. 

2A + 2B  =  -2C

tan(2A + 2B) =  tan(- 2C)

(tan2A + tan2B)/(1 - tan2Atan2B)  =  -tan2C

(tan2A + tan2B)  =  -tan2C(1 - tan2Atan2B)

tan2A + tan2B + tan2C  =  tan2Atan2Btan2C -----(1)

tan2A  =  2tanA / 1 - tan2A  =  2x/(1 - x2)

tan2B  =  2tanB / 1 - tan2B  =  2y/(1 - y2)

tan2C  =  2tanC / 1 - tan2C  =  2z/(1 - z2)

Substitute these in (1). 

2x/(1 -x2) + 2y/(1 -y2) + 2z/(1 - z2

=  2x/(1 -x2)  2y/(1 -y2) 2z/(1 - z2)

Hence proved.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 75)

    Nov 21, 24 06:13 AM

    digitalsatmath62.png
    Digital SAT Math Problems and Solutions (Part - 75)

    Read More