Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.
Problem 1 :
If A + B + C = 2s, then prove that
sin(s − A) sin(s − B) + sins sin(s − C) = sinA sinB
Solution :
Given : A + B + C = 2s.
sin(s − A) sin(s − B) :
= (2/2)sin(s − A) sin(s − B)
= (1/2)[cos(s - A - s + B) - cos(s - A + s - B)]
= (1/2)[cos(B - A) - cos(2s - A - B)]
= (1/2)[cos(B - A) - cos(A + B + C - A - B)]
= (1/2)[cos(B - A) - cosC]
sins sin(s − C) :
= (2/2)sins sin(s − C)
= (1/2)[2 sins sin(s - C)]
= (1/2)[cosC - cos(2s - C)]
sin(s − A) sin(s − B) + sins sin(s − C) :
= (1/2)[cos(B - A) - cosC] + (1/2)[cosC - cos(2s - C)]
= (1/2)[cos(B - A) - cosC + cosC - cos(2s - C)]
= (1/2)[cos(B - A) - cos(A + B + C - C)]
= (1/2)[cos(B - A) - cos(A + B)]
= (1/2)[-2sinB sin(-A)]
= sinA sin B
Hence proved
Problem 2 :
If x + y + z = xyz, then prove that
(2x/1 − x2) + (2y/1 − y2) + (2z/1 − z2)
= (2x/1 − x2) (2y/1 − y2) (2z/1 − z2)
Solution :
x + y + z = xyz
Let x = tanA, y = tanB and z = tanC.
Then,
x + y + z = xyz
tanA + tanB + tanC = tanA tanB tanC
tanA + tanB = tanA tanB tanC - tanC
tanA + tanB = tanC(tanAtanB - 1)
tanA + tanB = -tanC(1 - tanAtanB)
(tanA + tanB) / (1 - tanAtanB) = - tanC
tan(A + B) = tan(-C)
A + B = -C
Multiply each side by 2.
2A + 2B = -2C
tan(2A + 2B) = tan(- 2C)
(tan2A + tan2B)/(1 - tan2Atan2B) = -tan2C
(tan2A + tan2B) = -tan2C(1 - tan2Atan2B)
tan2A + tan2B + tan2C = tan2Atan2Btan2C -----(1)
tan2A = 2tanA / 1 - tan2A = 2x/(1 - x2)
tan2B = 2tanB / 1 - tan2B = 2y/(1 - y2)
tan2C = 2tanC / 1 - tan2C = 2z/(1 - z2)
Substitute these in (1).
2x/(1 -x2) + 2y/(1 -y2) + 2z/(1 - z2)
= 2x/(1 -x2) 2y/(1 -y2) 2z/(1 - z2)
Hence proved.
Problem 3 :
If A + B + C = π then prove that
sin A + sin B + sin C = 4 cos (A/2) cos (B/2) cos (C/2)
Solution :
L.H.S
sin A + sin B + sin C
= 2 sin (A + B)/2 cos (A - B)/2 + sin C
Since A + B + C = π
A + B = π - C -----(1)
(A + B)/2 = (π - C)/2
= π/2 - C/2
= 2 sin (π/2 - C/2) cos (A - B)/2 + sin C
= 2 cos (C/2) cos (A - B)/2 + sin C
= 2 cos (C/2) cos (A - B)/2 + 2 sin (C/2) cos (C/2)
= 2 cos (C/2) [cos (A - B)/2 + sin (C/2)]
= 2 cos (C/2) [cos (A - B)/2 + sin (π - (A + B))/2]
= 2 cos (C/2) [cos (A - B)/2 + sin (π/2) - (A + B)/2]
= 2 cos (C/2) [cos (A - B)/2 + cos (A + B)/2]
= 2 cos (C/2) [2cos ((A - B) + (A + B))/4 cos ((A - B) - (A + B))/4]
= 2 cos (C/2) [2cos ((A - B + A + B)/4 cos (A - B - A - B)/4]
= 2 cos (C/2) [2cos (2A/4) cos (- 2B/4)]
= 2 cos (C/2) [2cos (A/2) cos (B/2)]
= 4 cos (A/2) cos (B/2) cos (C/2)
R.H.S
Hence it is proved
In Δ ABC, prove that
(i) tan A + tan B + tan C = tan A . tan B . tan C
(ii) cot A . cot B + cot B . cot C + cot C . cot A = 1
Solution :
In a triangle, sum of interior angles = 180
A + B + C = π
A + B = π - C
tan (A + B) = tan (π - C)
(i) tan A + tan B + tan C = tan A . tan B . tan C
(tan A + tan B) / 1 - tan A tan B = tan (π - C)
(tan A + tan B) / 1 - tan A tan B = -tan C
tan A + tan B = -tan C(1 - tan A tan B)
tan A + tan B = -tan C + tan A tan B tan C
tan A + tan B + tan C = tan A tan B tan C
ii) From tan A + tan B + tan C = tan A tan B tan C
(tan A + tan B + tan C)/tan A tan B tan C = 1
(tan A / tan A tan B tan C) + (tan B / tan A tan B tan C ) + (tan C / tan A tan B tan C) = 1
(1/tan B tan C) + (1/tan A tan C ) + (1/tan A tan B) = 1
cot B cot C + cot A cot C + cot A cot B = 1
Hence it is proved
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Apr 26, 25 05:49 AM
Apr 25, 25 11:46 AM
Apr 24, 25 11:10 PM