PROBLEMS ON STANDARD INTEGRALS


Problem 1 :

Evaluate 

∫1/(1+9x2) dx

Solution :

  =  ∫1/(1+32x2)  dx

The given exactly matches with the formula 

∫1/(a2+x2) dx  =  1/a tan-1(x/a) + c

=  1/(1+(3x)2)  dx

=  1/3 tan-1(3x/1) + C

=  1/3 tan-1(3x) + C

Problem 2 :

Evaluate 

∫1/(1-9x2) dx

Solution :

  =  ∫1/(1-32x2)  dx

The given exactly matches with the formula 

∫1/(a2-x2) dx  =  (1/2a) [log (a+x)/(a-x)] + c

a  =  1 and x  =  3x

=  (1/2) [log(1+3x)/(1-3x)] + C

Problem 3 :

Evaluate 

∫1/(1+x2/16) dx

Solution :

  =  ∫1/((1+(x/4)2) dx

The given exactly matches with the formula 

∫1/(a2+x2) dx  =  (1/a) tan-1 (x/a) + c

a  =  1 and x  =  x/4

=  1 tan-1 ((x/4)/1) + C

=  tan-1 (x/4) + C

Problem 4 :

Evaluate 

∫1/((x+2)2-4) dx

Solution :

  =  ∫1/((x+2)2-22) dx

The given exactly matches with the formula 

∫1/(x2-a2) dx  =  (1/2a) [log (x-a)/(x+a)] + c

x  =  x+2 and a  =  2

=  (1/2⋅2) [log(x+2-2)/(x+2+2)] + C

=  (1/4) [log(x/(x+4))] + C

Problem 5 :

Evaluate 

∫1/√(25-x2) dx

Solution :

  =  ∫1/√(52-x2) dx

The given exactly matches with the formula 

∫1/√(a2-x2) dx  =  sin-1(x/a) + c

a  =  5 and x  =  x

=  sin-1(x/5) + c

Problem 6 :

Evaluate 

1/√(4x2-25) dx

Solution :

  =  ∫ 1/√((2x)2-52) dx

The given exactly matches with the formula 

∫1/√(x2-a2) dx  =  log[x+√(x2-a2)]+C

a  =  5 and x  =  2x

=  (1/2) log[2x+√(4x2-25)] + C

Problem 7 :

Evaluate 

∫1/√(9x2+16) dx

Solution :

  =  ∫1/√((3x)2+42) dx

The given exactly matches with the formula 

∫1/√(a2+x2) dx  =  log[x+√(a2+x2)] + c

x  =  3x and a  =  4

=  log[3x+√(9x2+42) + C

=  log[3x+√(9x2+16) + C

Problem 8 :

Evaluate 

∫1/((3x+5)2+4) dx

Solution :

=  ∫1/((3x+5)2+4) dx

The given exactly matches with the formula 

∫1/(x2+a2) dx  =  (1/a) tan-1(x/a) + c

x  =  3x+5 and a  =  2

=  (1/2) [tan-1(3x+5)/2] + C

Problem 9 :

Evaluate 

∫1/((x-2)+ 1) dx

Solution :

  = ∫1/((x-2)+ 1) dx

The given exactly matches with the formula 

∫1/(x2+a2) dx = (1/a) tan-1(x/a) + C

∫1/((x-2)+ 1) dx = (1/1) tan-1[(x - 2) / 1] + C

= tan-1(x - 2) + C

Problem 10 :

Evaluate 

∫x2/(x2 + 5) dx

Solution :

  = ∫x2/(x2 + 5) dx

Adding and subtracting 5 in the numerator, we get

  = ∫(x2 + 5 - 5)/(x2 + 5) dx

Decomposing into two fractions, we get

  = ∫(x2 + 5)/(x2 + 5) dx - ∫(5/(x2 + 5)) dx

  = ∫dx - 5∫(1/(x2 + 5)) dx

= x - 5 ∫(1/(x2 + √52 )) dx

= x - 5 [(1/√5) tan-1(x/√5)] + C

= x -  [√5 tan-1(x/√5)] + C

Problem 11 :

Evaluate 

∫1/(1 + 4x2) dx

Solution :

  = ∫1/√(1 + 4x2) dx

= ∫1/√(1 + (2x)2) dx

∫1/√(1 + x2) = log(x + √(1 + x2) + C 

= log(2x + √(1 + 4x2)/2 + C 

= (1/2) log (2x + √(1 + 4x2) + C 

Problem 12 :

Evaluate 

∫1/(4x2 - 25) dx

Solution :

  = ∫1/√(4x2 - 25) dx

= ∫1/√((2x)2 - 52) dx

∫1/√(1 - x2) = log(x + √(1 - x2) + C 

= log(2x + √(4x2- 25))/2 + C 

= (1/2) log(2x + √(4x2- 25)) + C

Problem 12 :

Evaluate 

∫1/(4x2 - 25) dx

Solution :

  = ∫1/√(4x2 - 25) dx

= ∫1/√((2x)2 - 52) dx

∫1/√(1 - x2) = log(x + √(1 - x2) + C 

= log(2x + √(4x2- 25))/2 + C 

= (1/2) log(2x + √(4x2- 25)) + C


Evaluate 

∫1/(4x2 - 25) dx

Solution :

  = ∫1/√(4x2 - 25) dx

= ∫1/√((2x)2 - 52) dx

∫1/√(1 - x2) = log(x + √(1 - x2) + C 

= log(2x + √(4x2- 25))/2 + C 

= (1/2) log(2x + √(4x2- 25)) + C

Problem 13 :

Evaluate 

∫1/(x2 - 2x + 5) dx

Solution :

  = ∫1/(x2 - 2x + 5) dx

Since we have quadratic at the denominator, we have to rewrite it as sum of difference of square using the method of completing the square.

x2 - 2x + 5 = x2 - 2x⋅1 + 12 - 12 + 5

= (x - 1)2 - 1 + 5

= (x - 1)2 + 4

∫1/(x2 - 2x + 5) dx = ∫1 / [(x - 1)2 + 4] dx

∫1 / (x2 + a2) dx = (1/a) tan-1 (x/a) + C

= (1/2) tan-1 [(x-1)/2] + C

Problem 14 :

Evaluate 

∫1/(x2 + 12x + 11) dx

Solution :

  = ∫1/√(x2 + 12x + 11) dx

Since we have quadratic at the denominator, we have to rewrite it as sum of difference of square using the method of completing the square.

x2 + 12x + 11 = x2 + 2x⋅6 + 62 - 62 + 11

= (x + 6)2 - 36 + 11

= (x + 6)2 - 25

∫1/√[(x + 6)2 - 25] dx = ∫1/√[(x + 6)2 - 52] dx

∫1 / √(x2 - a2) dx = log (x + √(x2 - a2)) + C

= log ( (x + 6) + √[(x + 6)2 - 52] ) + C

Problem 15 :

Evaluate 

∫1/(12 + 4x - x2) dx

Solution :

  = ∫1/√(12 + 4x - x2) dx

The quadratic that we have at the denominator is not in the standard form.

12 + 4x - x2 = -[x2 - 4x - 12]

= -[x2 - 2x⋅2 + 22 - 22 - 12]

= -[(x - 2)2 - 4 - 12]

= -[(x - 2)2 - 16]

= 16 - (x - 2)2

= ∫1/√(12 + 4x - x2) dx = ∫1/√[16 - (x - 2)2] dx

= ∫1/√[42 - (x - 2)2] dx

∫1 / √(a2 - x2) dx = sin-1 (x/a) + C

∫1/√[42 - (x - 2)2] dx = sin-1 [(x-2)/4] + C

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Jan 04, 25 10:29 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 96)

    Jan 04, 25 10:26 AM

    digitalsatmath86.png
    Digital SAT Math Problems and Solutions (Part - 96)

    Read More

  3. Simplifying Complex Fractions Problems and Solutions

    Jan 04, 25 12:31 AM

    Simplifying Complex Fractions Problems and Solutions

    Read More