Problem 1 :
Prove :
(1 - cos2 θ)csc2 θ = 1
Solution :
Let A = (1 - cos2 θ)csc2 θ and B = 1.
A = (1 - cos2 θ)csc2 θ
Since sin2 θ + cos2 θ = 1, we have
sin2 θ = 1 - cos2 θ
Then,
A = sin2 θ ⋅ csc2 θ
A = 1
A = B (Proved)
Problem 2 :
Prove :
Solution :
Since sin2 θ + cos2 θ = 1, we have
cos2 θ = 1 - sin2 θ
Then,
A = 1
A = B (Proved)
Problem 3 :
Prove :
tan θ sin θ + cos θ = sec θ
Solution :
Let A = tan θ sin θ + cos θ and B = sec θ.
A = tan θ sin θ + cos θ
A = sec θ
A = B (Proved)
Problem 4 :
Prove :
(1 - cos θ)(1 + cos θ)(1 + cot2θ) = 1
Solution :
Let A = (1 - cos θ)(1 + cos θ)(1 + cot2θ) = 1 and B = 1.
A = (1 - cos θ)(1 + cos θ)(1 + cot2θ)
A = (1 - cos2θ)(1 + cot2θ)
Since sin2 θ + cos2 θ = 1, we have
cos2 θ = 1 - sin2 θ
Then,
A = sin2θ ⋅ (1 + cot2θ)
A = sin2θ + sin2θ ⋅ cot2θ
A = sin2 θ + cos2 θ
A = 1
A = B (Proved)
Problem 5 :
Prove :
cot θ + tan θ = sec θ csc θ
Solution :
Let A = cot θ + tan θ and B = sec θ csc θ.
A = cot θ + tan θ
A = csc θ sec θ
A = sec θ csc θ
A = B (Proved)
Problem 6 :
Prove :
Solution :
A = sin θ + cos θ
A = B (Proved)
Problem 7 :
Prove :
tan4 θ + tan2 θ = sec4 θ - sec2 θ
Solution :
Let A = tan4 θ + tan2 θ and B = sec4 θ + sec2 θ.
A = tan4 θ + tan2 θ
A = tan2 θ (tan2 θ + 1)
We know that,
tan2 θ = sec2 θ - 1
tan2 θ + 1 = sec2 θ
Then,
A = (sec2 θ - 1)(sec2 θ)
A = sec4 θ - sec2 θ
A = B (Proved)
Problem 8 :
Prove :
Solution :
A = B (Proved)
Problem 9 :
Prove :
Solution :
A = (sec θ – tan θ)2
A = B (Proved)
Problem 10 :
Prove :
Solution :
A = B (Proved)
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 10, 25 05:08 AM
Jan 10, 25 05:02 AM
Jan 09, 25 01:09 PM