PROBLEMS ON TRIGONOMETRIC RATIOS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Problem 1 :

For the measures in the figure shown below, compute sine, cosine and tangent ratios of the angle θ.

Solution :

In the given right angled triangle, note that for the given angle θ, PR is the ‘opposite’ side and PQ is the ‘adjacent’ side.

Then, 

sinθ  =  opposite side/hypotenuse  =  PR/QR  =  35/37

cosθ  =  adjacent side/hypotenuse = PQ/QR  =  12/37

tanθ  =  opposite side / adjacent side  =  PR/PQ  =  35/12

Problem 2 :

Find the six trigonometric ratios of the angle θ using the diagram shown below. 

Solution :

In the given right angled triangle, note that for the given angle θ, AC is the ‘opposite’ side and AB is the ‘adjacent’ side.

And also, the length of the adjacent side 'AB' is not given. 

Find the length of AB.

By Pythagorean Theorem,

BC2  =  AB2 + AC2

252  =  AB2 + 72

625  =  AB2 + 49

Subtract 49 from each side. 

576  =  AB2

242  =  AB2

24  =  AB  

Then, 

sinθ  =  opposite side/hypotenuse  =   AC/ BC  =  7/25

cosθ  =  adjacent side/hypotenuse  =  AB/BC  =  24/25

tanθ  =  opposite side/adjacent side  =  AC/AB  =  7/24

cscθ  =  1/sinθ  =  25/7

secθ  =  1/cosθ  =  25/24

cotθ  =  1/tanθ  =  24/7

Problem 3 :

If tanA = 2/3, then find all the other trigonometric ratios. 

Solution :

tanA  =  opposite side/adjacent side  =  2/3

By Pythagorean Theorem,

AC2  =  AB2 + BC2

AC2  =  32 + 22

AC2  =  9 + 4

AC2  =  13

AC  =  √13

Then, 

sinA  =  opposite side/hypotenuse  =   BC/ AC  =  2/13

cosA  =  adjacent side/hypotenuse  =  AB/AC  =  3/√13

cscA  =  1/sinA  =  √13/2

secA  =  1/cosA  =  √13/3

cotA  =  1/tanA  =  3/2

Problem 4 :

If secθ  =  2/3, then find the value of

(2sinθ - 3cosθ)/(4sinθ - 9cosθ) 

Solution :

secθ  =  hypotenuse/adjacent side  =  13/5

By Pythagorean Theorem,

BC2  =  AB2 + AC2

132  =  52 + AC2

169  =  25 + AC2

Subtract 25 from each side. 

144  =  AC2

122  =  AC2

12  =  AC

Then, 

sinθ  =  opposite side/hypotenuse  =   AC/BC  =  12/13

cosθ  =  adjacent side/hypotenuse  =  AB/BC  =  5/13

(2sinθ - 3cosθ)/(4sinθ - 9cosθ) : 

=  (2 ⋅ 12/13 - 3 ⋅ 5/13)/(4 ⋅ 12/13 - 9 ⋅ 5/13)

=  (24/13 - 15/13)/(48/13 - 45/13)

=  [(24 - 15)/13]/[(48 - 45)/13]

=  (9/13)/(3/13)

=  (9/13)  (13/3)

=  9/3

=  3

So, 

(2sinθ - 3cosθ)/(4sinθ - 9cosθ)   =  3

To learn SOHCAHTOA in detail,

please click here

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. GMAT Quantitative Reasoning Questions and Answers

    Dec 27, 25 09:33 PM

    GMAT Quantitative Reasoning Questions and Answers

    Read More

  2. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  3. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More