How to multiply complex numbers in polar form ?
Let z1 = r1(cos θ1 + i sin θ1 ) and z2 = r2(cos θ2 + i sin θ2 ) be two complex numbers in the polar form.
We can use the formula given below to find the product of two complex numbers in the polar form.
z1 . z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)]
Find the product of z1 and z2.
Example 1 :
z1 = 7(cos 25˚ + i sin 25˚)
z2 = 2(cos 130˚ + i sin 130˚)
Solution :
By using the z1 . z2 formula, we get
z1 . z2 = (7 . 2)[cos (25˚ + 130˚) + i sin (25˚ + 130˚)]
z1 . z2 = 14(cos 155˚ + i sin 155˚)
Example 2 :
z1 = √2(cos 118˚ + i sin 118˚)
z2 = 0.5(cos (-19˚) + i sin (-19˚)
Solution :
By using the z1 . z2 formula, we get
z1 . z2 = (√2 . (1/2))[cos (118˚ - 19˚) + i sin (118˚ - 19˚)]
z1 . z2 = (1/√2)(cos 99˚ + i sin 99˚)
Example 3 :
z1 = 5(cos π/4 + i sin π/4)
z2 = 3(cos 5π/4 + i sin 5π/4)
Solution :
z1 . z2 = (5 . 3)[cos (π/4 + 5π/3) + i sin (π/4 + 5π/3)]
Taking the least common multiple, we get
z1 . z2 = 15[cos ((3π + 20π)/12) + i sin ((3π + 20π)/12)]
z1 . z2 = 15[cos (23π/12) + i sin (23π/12)]
Example 4 :
z1 = √3(cos 3π/4 + i sin 3π/4)
z2 = 1/3(cos π/6 + i sin π/6)
Solution :
z1 . z2 = (√3 . 1/3)[cos (3π/4 + π/6) + i sin (3π/4 + π/6)]
Taking the least common multiple, we get
z1 . z2 = (1/√3)[cos ((9π + 2π)/12) + i sin ((9π + 2π)/12)]
z1 . z2 = (1/√3)[cos (11π/12) + i sin (11π/12)
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jan 02, 25 08:27 AM
Jan 02, 25 08:23 AM
Jan 01, 25 10:53 PM