PROPERTIES OF MODULUS OF COMPLEX NUMBERS

Following are the properties of modulus of a complex number z. 

1.  Let z = a + ib, where a and b are real numbers. Then, 

|z| = √(a2 + b2)

2.  |z| = |conjugate of z|

3.  |z1 + z2≤ |z1| +|z2| (Triangle Inequality)

4.  |z1 - z2 |z1| - |z2|

5.  |z1z2| = |z1||z2|

6.  |z1/z2| = |z1|/|z2|

7.  |zn| = |z|n, where n is an integer. 

8.  Re(z) ≤ |z|

9.  Im(z) ≤ |z|

10. The distance between the two points z1 and z2 in complex plane is |z1 -  z2|.

Practice Questions

Questions 1-4 : Find the modulus of each of the following complex numbers

Question 1 :


2/(3 + 4i)

Answer :

|(2/(3 + 4i)| = |2|/|(3 + 4i)|

= 2/√(32 + 42)

= 2/√(9 + 16)

= 2/√25

= 2/5

Question 2 : 

(2 - i)/(1 + i) + (1 - 2i)/(1 - i)

Answer :

= |(2 - i)/(1 + i) + (1 - 2i)/(1 - i)|

= |(2 - i)|/|(1 + i)| + |(1 - 2i)|/|(1 - i)| ----(1)

|(2 - i)| = √(22 + 12) = √5

|1 + i| = √(12 + 12) = √2

|1 - 2i| = √(12 + 22) = √5

|1 - i| = √(12 + 12) = √2

Substitute the values in (1). 

 = (√5/√2) + (√5/√2)

= 2√5/√2

= √2√5

√10

Question 3 : 

(1 - i)10

Answer :

|zn|  =  |z|n

(1 - i)10 =  {(1 - i)2}5

= (12 + i2 - 2i)5

= (1 - 1 - 2i)5

= (- 2i)5

= -32i5

= |-32i|

√(-32)2

= 32

Question 4 :

2i(3− 4i)(4 − 3i) 

Answer :

|2i(3− 4i)(4 − 3i)| = |2i||3 - 4i||4 - 3i|

√22 √32 + (-4)2√4+ (-3)

√4√25√25

= 2(5)(5)

= 50 

Question 5 :

For any two complex numbers z1 and z2 , such that |z1| = |z2|  =  1 and z1 z2 ≠ -1, then show that z1 + z2/(1 + z1 z2) is a real number.

Answer :

Let z1  =  1 and z =  i

|z1|  =  √1+ 0 =  1

|z2|  =  √0 + 1 =  1

z1 z2  =  1 + i

z z1  =   i

By applying the  values of zz2 and z zin the given statement, we get 

z1 + z2/(1 + z1 z2)    =  (1 + i)/(1 + i)  =  1

1 is real. Hence it is proved.

Question 6 :

Which one of the points 10 − 8i , 11 + 6i is closest to 1 + i

Answer :

Let the given points as A(10 - 8i), B (11 + 6i) and C (1 + i).

To find which point is more closer, we have to find the distance between the points AC and BC.

AC  =  √(1-10)+ (1+8)

  =  √9+ 92

  =  √(81 + 81)

AC  =  √162

BC  =  √(1-11)+ (1-6)

  =  √10+ (-5)2

  =  √(100 + 25)

BC  =  √125

√162 > √125

Hence the point B is closer to C.

Apart from the stuff given in this sectionif you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 72)

    Nov 23, 24 09:36 PM

    digitalsatmath57.png
    Digital SAT Math Problems and Solutions (Part - 72)

    Read More

  2. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Nov 23, 24 10:01 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 76)

    Nov 23, 24 09:45 AM

    digitalsatmath63.png
    Digital SAT Math Problems and Solutions (Part - 76)

    Read More