Following are the properties of modulus of a complex number z.
1. Let z = a + ib, where a and b are real numbers. Then,
|z| = √(a2 + b2)
2. |z| = |conjugate of z|
3. |z1 + z2| ≤ |z1| +|z2| (Triangle Inequality)
4. |z1 - z2| ≥ |z1| - |z2|
5. |z1z2| = |z1||z2|
6. |z1/z2| = |z1|/|z2|
7. |zn| = |z|n, where n is an integer.
8. Re(z) ≤ |z|
9. Im(z) ≤ |z|
10. The distance between the two points z1 and z2 in complex plane is |z1 - z2|.
Questions 1-4 : Find the modulus of each of the following complex numbers
Question 1 :
2/(3 + 4i)
Answer :
|(2/(3 + 4i)| = |2|/|(3 + 4i)|
= 2/√(32 + 42)
= 2/√(9 + 16)
= 2/√25
= 2/5
Question 2 :
(2 - i)/(1 + i) + (1 - 2i)/(1 - i)
Answer :
= |(2 - i)/(1 + i) + (1 - 2i)/(1 - i)|
= |(2 - i)|/|(1 + i)| + |(1 - 2i)|/|(1 - i)| ----(1)
|(2 - i)| = √(22 + 12) = √5
|1 + i| = √(12 + 12) = √2
|1 - 2i| = √(12 + 22) = √5
|1 - i| = √(12 + 12) = √2
Substitute the values in (1).
= (√5/√2) + (√5/√2)
= 2√5/√2
= √2√5
= √10
Question 3 :
(1 - i)10
Answer :
|zn| = |z|n
(1 - i)10 = {(1 - i)2}5
= (12 + i2 - 2i)5
= (1 - 1 - 2i)5
= (- 2i)5
= -32i5
= |-32i|
= √(-32)2
= 32
Question 4 :
2i(3− 4i)(4 − 3i)
Answer :
|2i(3− 4i)(4 − 3i)| = |2i||3 - 4i||4 - 3i|
= √22 √32 + (-4)2√42 + (-3)2
= √4√25√25
= 2(5)(5)
= 50
Question 5 :
For any two complex numbers z1 and z2 , such that |z1| = |z2| = 1 and z1 z2 ≠ -1, then show that z1 + z2/(1 + z1 z2) is a real number.
Answer :
Let z1 = 1 and z2 = i
|z1| = √12 + 02 = 1
|z2| = √0 + 12 = 1
z1 + z2 = 1 + i
z1 z1 = i
By applying the values of z1 + z2 and z1 z2 in the given statement, we get
z1 + z2/(1 + z1 z2) = (1 + i)/(1 + i) = 1
1 is real. Hence it is proved.
Question 6 :
Which one of the points 10 − 8i , 11 + 6i is closest to 1 + i
Answer :
Let the given points as A(10 - 8i), B (11 + 6i) and C (1 + i).
To find which point is more closer, we have to find the distance between the points AC and BC.
AC = √(1-10)2 + (1+8)2 = √92 + 92 = √(81 + 81) AC = √162 |
BC = √(1-11)2 + (1-6)2 = √102 + (-5)2 = √(100 + 25) BC = √125 |
√162 > √125
Hence the point B is closer to C.
Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 26, 24 07:41 AM
Dec 23, 24 03:47 AM
Dec 23, 24 03:40 AM